Cross-Shape Attention for Part Segmentation of 3D Point Clouds

Marios Loizou ${ }^{\text {+1 }} \quad$ Siddhant Garg ${ }^{\text {+2 }} \quad$ Dmitry Petrov ${ }^{\text {+2 }}$ Melinos Averkiou ${ }^{1}$
Evangelos Kalogerakis ${ }^{2}$
${ }^{1}$ University of Cyprus / CYENS COE
${ }^{2}$ University of Massachusetts Amherst

Goal: learn more coordinated feature representations

Goal: learn more coordinated feature representations

Goal: learn more coordinated feature representations

Goal: learn more coordinated feature representations

Goal: learn more coordinated feature representations

Prior work: Point-based networks

Prior work: Point-based networks

PointNet++ [Qi et al. 2017]

PointNeXt [Qian et al. 2022]

Prior work: GCNs for non-Eucledian data

DeepGCNs [Li et al. 2023]

Prior work: Volumetric networks

MinkowskiNet [Choy et al. 2019]

Prior work: Attention is All You Need

PointTransformer v1/v2 [Zhao et al. 2021, 2022]

Transformer [Vaswani et al. 2017]

Why use attention for 3D representations?

Encode points such that their features capture relations wrt the rest of the shape

Why use attention for 3D representations?

Encode points such that their features capture relations wrt the rest of the shape

Why use attention for 3D representations?

Encode points such that their features capture relations wrt the rest of the shape

Why use attention for 3D representations?

Encode points such that their features capture relations wrt the rest of the shape

Why use attention for 3D representations?

Encode points such that their features capture relations wrt the rest of the shape

Why use attention for 3D representations?

Why use attention for 3D representations?

final query representation

query representations from multiple attention heads
query point

Motivation: Long-range interactions across shapes

Motivation: Long-range interactions across shapes

Key challenge: Retrieve compatible shapes

Key challenge: Retrieve compatible shapes

Key challenge: Retrieve compatible shapes

Key challenge: Combine multiple shapes

Key challenge: Combine multiple shapes

Key challenge: Combine multiple shapes

Pipeline

Pipeline

Shape Collection

Pipeline

Pipeline

Pipeline

Pipeline

Pipeline

Pipeline

Pipeline

Cross-Shape Attention

query shape $\mathcal{S}_{m}=\left\{\boldsymbol{p}_{i}\right\}_{i=1}^{M}$
key shape $\mathcal{S}_{n}=\left\{\boldsymbol{p}_{j}\right\}_{j=1}^{N}$

Cross-Shape Attention

Cross-Shape Attention

$\boldsymbol{X}_{m} \in R^{M \times D}$

Backbone point representations

Cross-Shape Attention

Backbone point representations

Intermediate
representations

Cross-Shape Attention

Backbone point representations

Cross-Shape Attention

$\boldsymbol{W}_{V} \in R^{D \times D} \quad$ Key-value representations

Backbone point representations

Intermediate representations

Cross-Shape Attention

Backbone point representations
$\boldsymbol{W}_{V} \in R^{D \times D} \quad$ Key-value representations

Cross-Shape Attention

key shape

Cross-Shape Attention for multiple shapes

query shape

Cross-Shape Attention for multiple shapes

Cross-Shape Attention for multiple shapes

Cross-Shape Attention for multiple shapes

query shape

- $\mathcal{C}(m)$: set of compatible key shapes
- $\quad c(m, n)$: compatibility function between query shape S_{m} and key shape S_{n}

Compatibility function

Compatibility function

Compatibility function

Compatibility function

Cross-Shape Attention for multiple shapes

Cross-Shape Attention for multiple shapes

Retrieve compatible shapes

Retrieve compatible shapes

Key shape retrieval

11

$$
\begin{aligned}
& \Gamma \\
& \Pi
\end{aligned}
$$

Key shape retrieval $\pi \pi^{1}$

$$
\square \boldsymbol{X}_{n_{2}}^{\prime(S S A)}
$$

Key shape retrieval $\pi \pi^{1}$

Key shape retrieval: Examples

query shapes

key shapes

PartNet dataset

$$
\text { Coarse } \longrightarrow \text { Fine-grained }
$$

[Moetal. 2019]

PartNet dataset

[Moetal. 2019]

Examples of shape collections

Training details: Loss

$$
L_{C E}=-\sum_{\boldsymbol{p}_{i} \in \mathcal{S}_{k}} \widehat{\boldsymbol{q}}_{i} \log \boldsymbol{q}_{i}
$$

$$
\mathcal{S}_{k}: \text { shape } k=\left\{\boldsymbol{p}_{i}\right\}_{i=1}^{P_{k}}
$$

$\widehat{\boldsymbol{q}}_{i}$: ground-truth one-hot label vector for point \boldsymbol{p}_{i} \boldsymbol{q}_{i} : predicted label probabilities for point \boldsymbol{p}_{i}
training data

Training details: Backbones

MID-FC [Wang et al. 2021]

Training details: Backbones

HRNet [Wang et al. 2021]

Training details: Collection graph

Shape Collection

Training details: Collection graph

Collection graph

Training details: Collection graph

Collection graph

Training details: Collection graph

Collection graph

Inference: Collection graph

Inference: Collection graph

Results

Results: MinkowskiNet variants

Method	Part loU
MinkHRNet	48.0

Results: MinkowskiNet variants

Results: MinkowskiNet variants

Method	Part loU
MinkHRNet	48.0
MinkHRNetCSN-SSA	48.7
MinkHRNetCSN-K1	49.9
MinkHRNetCSN-K2	49.7

Results: MinkowskiNet variants

Method	Part loU
MinkHRNet	48.0
MinkHRNetCSN-SSA	48.7
MinkHRNetCSN-K1	$\mathbf{4 9 . 9}$
MinkHRNetCSN-K2	49.7

Ground truth

Results: MinkowskiNet variants

MinkHRNet

Ground truth

Results: MinkowskiNet variants

MinkHRNetCSN-SSA

Ground truth

Results: MinkowskiNet variants

MinkHRNetCSN-K1

Results: MID-FC variants

Method	Part IoU
MID-FC	60.8

Results: MID-FC variants

Results: MID-FC variants

Method	Part loU
MID-FC	60.8
MID-FC-CSN-SSA	61.8
MID-FC-CSN-K1	61.9
MID-FC-CSN-K2	61.9
MID-FC-CSN-K3	62.0
MID-FC-CSN-K4	$\mathbf{6 2 . 1}$
MID-FC-CSN-K5	62.0

Ground truth
Results: MID-FC variants

MID-FC

- Leg

Board
Shelf

Ground truth
Results: MID-FC variants

MID-FC

MID-FC-CSN-SSA

Ground truth
Results: MID-FC variants

MID-FC-CSN-SSA
MID-FC-CSN-K4

Results: Comparison with other methods

Method	Part loU
ResGCN-28 (Li et al. 2023)	45.1
CloserLook3D (Liu et al. 2020)	53.8
MinkResUNet (Choy et al. 2019)	46.8
MinkHRNetCSN-K1 (ours)	49.9
MID-FC (Wang et al. 2021)	60.8
MID-FC-CSN-K4 (ours)	$\mathbf{6 2 . 1}$

Results: Comparison with other methods

Method	Part loU
ResGCN-28 (Li et al. 2023)	45.1
CloserLook3D (Liu et al. 2020)	53.8
MinkResUNet (Choy et al. 2019)	46.8
MinkHRNetCSN-K1 (ours)	49.9
MID-FC (Wang et al. 2021)	60.8
MID-FC-CSN-K4 (ours)	$\mathbf{6 2 . 1}$

Results: Comparison with other methods

Method	Part loU
ResGCN-28 (Li et al. 2023)	45.1
CloserLook3D (Liu et al. 2020)	53.8
MinkResUNet (Choy et al. 2019)	46.8
MinkHRNetCSN-K1 (ours)	49.9
MID-FC (Wang et al. 2021)	60.8
MID-FC-CSN-K4 (ours)	$\mathbf{6 2 . 1}$

Results: Comparison with other methods

Method	Part loU
ResGCN-28 (Li et al. 2023)	45.1
CloserLook3D (Liu et al. 2020)	53.8
MinkResUNet (Choy et al. 2019)	46.8
MinkHRNetCSN-K1 (ours)	49.9
MID-FC (Wang et al. 2021)	60.8
MID-FC-CSN-K4 (ours)	$\mathbf{6 2 . 1}$

SOTA performance on the PartNet dataset

Summary

- Enable long range point feature interactions across shapes

Summary

Cross-shape
convolution

Shape Collection

- Enable long range point feature interactions across shapes
- Introduce a novel cross-shape attention mechanism

Summary

Shape Collection

- Enable long range point feature interactions across shapes
- Introduce a novel cross-shape attention mechanism
- Retrieve compatible shapes for cross-shape attention

Summary

Shape Collection

- Enable long range point feature interactions across shapes
- Introduce a novel cross-shape attention mechanism
- Retrieve compatible shapes for cross-shape attention
- SOTA performance on PartNet

Summary

Limitations:

- Increased computational cost due to shape retrieval

Summary

Limitations:

- Increased computational cost due to shape retrieval
- Currently no support for multi-object scenes

Thank you!

Acknowledgements:

Our project web page:

 https://marios2019.github.io/CSN/

