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Prior work: GCNs for non-Eucledian data

DGCNN [Wang et al. 2019]

DeepGCNs [Li et al. 2023]



Prior work: Volumetric networks

MinkowskiNet [Choy et al. 2019]

O-CNN [Wang et al. 2017]



Prior work: Attention is All You Need

Transformer [Vaswani et al. 2017]

PointTransformer v1/v2 [Zhao et al. 2021, 2022]
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[Mo et al. 2019]



PartNet dataset

Bed Bottle Chair Clock Dishwasher Display Door Earphone Faucet

Knife Lamp Microwave Refrigerator Storage Furn. Table Trashcan Vase

[Mo et al. 2019]
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Table 
category

Chair 
category

5,707 training shapes 4,489 training shapes



Training details: Loss

training
data

𝒮𝑘 : shape 𝑘 = 𝒑𝑖 𝑖=1
𝑃𝑘

ෝ𝒒𝑖: ground-truth one-hot label vector for point 𝒑𝑖

𝒒𝑖: predicted label probabilities for point 𝒑𝑖
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Results: Comparison with other methods
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Limitations:

• Increased computational cost due to shape retrieval

• Currently no support for multi-object scenes

Summary



Thank you!

Acknowledgements:  

Our project web page:
https://marios2019.github.io/CSN/

https://marios2019.github.io/CSN/

	Introduction
	Slide 1: Cross-Shape Attention for Part Segmentation of 3D Point Clouds
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

	Prior work
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	Motivation
	Slide 22
	Slide 23

	Key Challenge
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

	Pipeline
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

	Cross-Shape Attention
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

	Compatibility function
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

	Shape retrieval
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

	Dataset
	Slide 77
	Slide 78
	Slide 79

	Training
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

	Results
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

	Summary
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113


