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Abstract

In this work we investigated Autism Spectrum Disorder vs Typically
Developing classification task based on structural connectomes. Using
combination of different weighting schemes, topological normalizations
and graph metrics we constructed about 500 feature sets and tested them
using selected classifiers and cross-validation techniques. We found fea-
tures obtained with combination of weighting by distance and topolgical
normalization which achieved 0.8 ROC AUC score. It is comparable with
results described in recent studies. We also tried dimensionality reduction
on the best obtained features, but didn’t find simple geometry in our data.



Аннотация

В нашей работе мы решали задачу различения аутизма и нормы на
основе структурных коннектом. Используя различные схемы взвеше-
ния, топологической нормализации коннектом и различных графовых
метрик, мы сконструировали около 500 различных наборов призна-
ков. Мы проверили их для выбранных классификаторов (линейных
и на основе решающих деревьев) с помощью процедур перекрестного
контроля. Мы обнаружили набор признаков, полученный с помощью
комбинации нормировки на расстояние и топологической нормировки,
который существенно улучшает качество классификации, измеренное
как площадь под ROC-кривой. Лучшая модель на лучших признаках
дала ROC AUC около 0.8, что на уровне опубликованных работ по
этой теме. Мы также попробовали общепринятые методы снижения
размерности на лучших признаках, но не обнаружили простой гео-
метрии в наших данных.
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1 Introduction

Connectome graphs are discrete mathematical models which represent struc-
tural or functional connections between anatomically distinct brain areas [1]. A
recent rapid growth of connectome analysis is driven by the assumption, that
structural properties of brain networks captured by connectomes can provide
new insight into the nature of disease-related (or treatment-caused) changes in
brain structure and functioning. However, most of the studies employ group-
based comparison of network features (e.g., disease versus norm). In this case
even when group differences in network features are found, they might not be
predictive for individual connectomes.

To date diagnostic of psychiatric disorders and neurodegenerative disorders
based on neuroimaging data is far from being accurate (for a recent reviews on
this topic, see [2] and [3]). This is true for many conditions, including autism
spectrum disorders considered in our study. Most of the studies reported to date
are based on relatively small samples and mostly incorporate the logics of group-
based comparison without any cross-validation procedures (for review of findings
specific to autism spectrum disorders, see [4], [5]). Even if the use machine
learning techniques they suffer from overfitting and poor choice of performance
metrics and hyperparameters.

In our study we used machine learning algorithms with cross-validation pro-
cedures to investigate structural differences between typically developing (TD)
and autism spectrum disorder (ASD) subjects. In each step we build our models
on train datasets and then validate them on unknown test data. This provided
an insight of how well our models will behave on newly coming observations,
while predictive power of the features based on whole-group analysis remains
unclear [6].

We generated about 500 different datasets for ASD vs TD connectome clas-
sification task, using combinations seven connectome weighting schemes, six
topological normalizations, and set of graph metrics (common undirected, com-
mon directed and custom directed). Pipeline scheme (excluding dimensionality
reduction) is shown on Figure 1.

On each of these datasets we performed hyperparameter grid search for cho-
sen classifiers: Logistic Regression, Linear SVM, Stochastic Gradien Descent
with modified Huber loss, Random Forest, Adaboost and Boosted Decision
Trees. For the 50 best combinations of classifiers and features we reported
mean and std of ROC AUC distributions across 50 different 10-fold splits with
fixed random states.

We further investigated effects of combined normalization scheme incorpo-
rating geometric and topological normalization of structural connectomes. We
test our approach by classifying autism spectrum disorder versus typical de-
velopment connectomes with linear and tree-based classification methods. We
showed that neither geometric nor topological normalization alone improve clas-
sification performance. However, a significant performance increase is achieved
using their combination. We further improve leave-one-out cross-validation re-
sults and report relative zone importance by adjusting l1-regularization ratio
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Figure 1: Machine learning pipeline scheme
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for linear SVM.
We also tried all common dimensionality reduction methods on the best fea-

ture set – Principal Component Analysis with linear and with radial basis func-
tion, sigmoid, polynomial (degrees 2-5) and cosine kernels, Multidimensional
Scaling, Spectral Embedding, Isomap and t-distributed Stochastic Neighbor
Embedding (TSNE). It didn’t yield any simple geometry in our data.

There are several limitations of this study. First of all, sample size is quite
small for the results to be conclusive. Although the groups of ASD and TD
subjects are relatively large compared to similar studies published to date, it is
highly desirable to replicate the analyses on larger samples. This is primarily
due to high dimensionality of the task at hand. For example, analysis based on
the bag of edges involved tens of thousands of features with only 94 observations.
We employed statistical techniques of feature selection and cross-validation rec-
ommended for such situations, but larger sample size would be the best recipe
to improve the analysis.

Second, there are certain methodological aspects of the data that should
be noted. For example, parcelling brain volume into nodes was quite unusual
for structural network analysis. Usualy DTI-based networks are constructed on
atlas-based zones or their partitions. Thus, results obtained for this functional-
connectivity-based parcellation scheme need to be reproduced on networks with
alternative parcellation of brain zones.

Finally, we intentionally left aside any neurological interpretation of our
findings. Our study is purely exploratory in nature, and our analysis is blind to
substantial meaning of the observed differences. We output the labels of brain
zones for which significant differences in local network characteristics between
ASD and TD groups are found, but do not go any further in interpreting our
results. Further investigation on additional datasets and classification tasks is
required to generalize our conclusions.

2 Connectome machine learning overview

Machine learning is relatively new in the neuroimaging data analysis. Very
comprehensive recent overview on the topic was done by Ababshirani et al. [2]
Authors examined more than 200 studies focused on differentiation of various
mental and neurodegenerative disorders such as Alzheimers’ disease, schizophre-
nia, depressive disorders, autism spectrum disorders and attention-deficit hyper-
activity disorder. For each of them they gave brief feature description, classifi-
cation methods and performance.

It turned out, that there are several common pitfalls of machine learning in
neuroimaging. First, overfitting. For example, studies often select features with
statistic tests on the whole sample which can lead to inflated results. Figure 2
shows screenshot fromm Ababshirani et al. review with scatter plot of accuracy
vs. sample size in 200 reviewed studies. We see that classification performance
tend to drop with the sample size increase which can indicate possible overfit
in low sample models.
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Figure 2: Screenshot from review by Arbabshirani et al. [2]. It shows overall
accuracy vs. overall sample size scatter plot of 200 machine learning on neu-
roimaging data studies.

Second pitfall is a poor choice of classification performance metrics. For ex-
ample, most studies report only overall accuracy, even for imbalanced datasets.
Third, poor hyperparameter optimization. Some of the reviewed studies used
only default parameters of implemented models. We tried to avoid all these
pitfalls in our study (see ‘Machine learning pipeline’ section).

ASD vs TD classification studies has all pitfalls mentioned above. Figure 3
shows screenshot of a table from Arbabshirani review with results of 20 studies
concerning ASD vs TD classification task. We see that only two of them use
metric that differs from accuracy and also that bigger sample size studies tend to
have lower performance which agian can indicate possible overfitting on smaller
samples.

3 Problem statement and data

We consider the two classes ‘typically developing’ (TD) and ‘autism spectrum
disorder’ (ASD) based on diagnosis, and classify individual brain networks based
on constructed features described in the following chapters.

We use UCLA autism dataset publicly available for download at the UCLA
Multimodal Connectivity Database [8], [9]. The dataset includes DTI-based
connectivity matrices of 51 ASD subjects (6 females) and 43 TD subjects (7
females). Average age (age standard deviation) were 13.0 (2.8) for ASD group
and 13.1 (2.4) for TD group. To control for possible confounding effects, we
included both age and sex as features in all analyses. Details on participants
recruitment, DTI scans acquisition and construction of connectivity matrices
can be found in the paper by Rudie et al. [7]. In this section, we only focus on
some key aspects of the pipeline.

DTI scans were acquired on a Siemens 3T Trio. The DTI sequence consisted
of 32 scans with different diffusion-weighted directions (b=1000 s/mm2), three

4



Figure 3: Screenshot from review by Arbabshirani et al. (NeuroImage, 2016).
It shows summary of 20 machine learning studies of ASD vs TD classification
based on neuroimaging data.
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scans with no diffusion sensitization at b=0, and six scans at b=50 s/mm2. An
in-plane voxel dimension was 2×2mm with 2-mm thick axial slices, and total
scan time was 8 min 1 s. Subjects with excessive motion artifacts were not in-
cluded in the final sample. Mean and maximum relative motion did not differ in
ASD and TD groups. Motion and eddy current correction was performed on the
diffusion-weighted images using ‘eddy correct’ in FMRIB’s Diffusion Toolbox.

Whole brain deterministic tractography was performed on voxelwise frac-
tional anisotropy (FA) values using the fiber assignment by continuous tracking
(FACT) algorithm [10] in Diffusion Toolkit [11]. Tractography was carried out
with relaxed constraints: maximum turn angle was set at 50o, and no FA cutoff
was applied. This means that the algorithm implied somewhat boosted like-
lihood of detecting longer fibers between spatially distant areas. Fibers were
smoothed using a spline filter; fibers shorter than 5 mm were excluded from
connectivity count.

As mentioned in the previous section, the choice of brain volume parcelling
scheme is an important step in connectivity matrix construction. It determines
the number and location of the vertices of brain networks and thus the structure
of the graph to be analysed. For this dataset, definition of nodes was somewhat
unusual for DTI-based networks that commonly use atlas-based or voxel-wise
parcellation approaches. Instead, connectivity matrices in this dataset were
created using parcellation scheme recently proposed by Power et al. [12] based
on a large meta-analysis of fMRI studies combined with whole brain functional
connectivity mapping. This approach produced 264 brain regions and thus
264×264 connectivity matrices. For the purposes of this study, we take this
parcellation scheme as is and do not discuss its potential benefits and caveats.

The number of streamlines connecting each pair of regions was used to set
the respective edge weights. Thus, the resulting adjacency matrices were sym-
metric and weighted, with larger weights indicating more streamlines detected
between the respective brain regions. Following recommendations by Jones et
al. [13] we prefer not to use the term ‘fiber count’ because the number of stream-
lines detected by tractography algorithm does not necessarily correspond to the
number of actual white matter fibers.

4 Connectome preprocessing

Connectome datasets usually include non-normalized DTI connectivity matri-
ces. But number of detected streamlines is known to vary from individual to
individual and can also be affected by fiber tract length, volume of cortical
regions and other factors. Normalization of connectivity matrices is highly rec-
ommended prior to any analyses (e.g., see [14] and [15]).

There is no consensus on how to do it. There seems to be two major ap-
proaches to it. The first approach directly involves geometric measures such as
volume of the cortical regions or physical path lengths between the regions [14],
[15]. The second requires purely topological normalizations (e.g., see [16] and
[17]). We used several approaches in this study.
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4.1 Weights

We used six different weighting schemes. First, we used weights aij from original
connectomes that are proportional to the number of streamlines detected by
tractography.

Second, we obtained binary weights:

abij = 1 if aij > 0, 0 else. (1)

The motivation here is following: maybe particular weights are not important
and the only important thing is existence of link between nodes.

Third, we used weighting by squared distance between nodes:

aweightedij =
aij
l2ij
. (2)

where lij is the Euclidean distance between centers of regions i and j. We used
MNI coordinates of zone centers provided by the authors of the dataset to obtain
the reasonable proxy of the distances between brain regions; these distances are
the same for all subjects. This weighting scheme has some physical intuition
behind: if we consider original weights aij as ‘area of the tract wire’, than this
weighting scheme provides us ‘resistance of the wire’, which proportional to
area and inversely proportional to distance. Distances were squared to produce
non-dimensional quantity.

Fourth, we used square root of previous weights:

arootweightedij =

√
aij

lij
. (3)

This weighting scheme was introduced as another version of previous weighting
scheme.

Fifth, we used square root of original weights.

a′ij =
√
aij . (4)

Sixth, we used square root of original weights:

ainvdistij =
1

lij
. (5)

Weightings 5-6 were introduced to test alone effects of root weights/inverse
distances.

4.2 Normalizations

Number of detected streamlines in connectomes is known to vary from indi-
vidual to individual and can also be affected by fiber tract length, volume of
cortical regions and other factors. Normalization of connectivity matrices is
highly recommended prior to any analyses (e.g., see [14] and [15]).
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There is no consensus on how to normalize the streamline count. There seems
to be two major approaches to it. The first approach directly involves geometric
measures such as volume of the cortical regions or physical path lengths between
the regions [14], [15]. The second requires purely topological normalizations
(e.g., see [16] and [17]).

Topological normalizations themselves can differ in what effects they aim
to eliminate. In the simplest case, streamline count for each pair of regions is
normalized by the total number of streamlines in the entire brain, thus reducing
variability among the connectivity matrices due to differences in the total num-
ber of detected streamlines. More sophisticated procedures involve weighting
each edge by the arithmetic mean or geometric mean of the total number of
streamlines leaving its adjacent regions. Yet another approach aims to interpret
weights as probabilities of coming from one region to another and thus produces
non-symmetric matrices as a result of normalization.

Alongside with pure weights (non normalization at all) we used six topolog-
ical normalizations schemes: First, by sum of all matrix elements

wby sumij =
aij∑
ij aij

. (6)

Second, this normalization was modified by dividing each normalized matrix
by its maximum value, as recommended by [17]. This further reduces differences
between different connectivity matrices and allows comparison based on purely
topological characteristics.

wsum by max
ij =

wsumij

maxi,j wsumij

. (7)

Third, we used normalization by maximum alone.

wby maxij =
aij

maxi,j aij
. (8)

Fourth, we applied weighted communicability normalization [?] to each of
the three weighted sets of connectomes:

wspectralij =
aij√
didj

, (9)

where aij is weight of edge between nodes i and j; di is weighted degree of
node i.

This normalization scheme produces matrices closely related to normalized
graph Laplacians. Indeed, Eq. (2) in a matrix form isWnormed = D−1/2AD−1/2,
where A is a matrix of edge weights and D is a diagonal matrix of node degrees,
while the normalized graph Laplacian is obtained by L = I − D−1/2AD−1/2
with I being an identity matrix. In particular, this means that matrices nor-
malized by the geometric mean of the adjacent degrees have the same spectral
properties as normalized Laplacians.
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Fifth, we combined this normalization with normalization by maximum:

wspectral by maxij =
wspectralij

maxi,j w
spectral
ij

. (10)

Finally, we used random walk normalization:

pij =
aij∑
j aij

. (11)

This normalization produces from symmetric graph adjacency matrix non-symmetric
random walk on graph matrix. Physical intuition here is simple: maybe we
should look on probabilities of signal transmission in the network determined
by network connections. This consideration helped us to make some of the most
successful features (see part about custom directed graph metrics).

5 Connectome featurizing

Here we describe features generated to implement supervised machine learning
techniques. Here and forth V is the set of all nodes in our network G and
n = |V | the number of nodes. E is the set of all edges in the network, and
m = |E| is number of them. Edges (i, j) have weights wij , which are normalized
(0 ≤ wij ≤ 1). aij is the connection status between nodes i and j. AW = wij
and A = aij are weighted and unweighted adjacency matrices.

Please note: here and forth by ‘weights’ we mean weights obtained through
combination of weighting schemes and topological normalizations, mentioned
above.

5.1 Bag of edges

The simplest method to produce features is to treat matrix as a vector. Each
weighted edge acts as a feature, and no relationships between them are taken
into account. For 264×264 connectivity matrices this method produces 34,716
features (because DTI connectivity matrices are symmetric with zero diagonal).
Please note, that for random walk normalization bag of edges are twice as
large, because it produces non-symmetric random matrix from symmetric graph
adjacency matrix.

In addition to bag of edges on weights, we also used bag of edges of shortest
path matrices. For random walk matrices shortest paths were calculated using
negative logarithm of probabilities:

wln
ij = − ln pij . (12)

Intuition here is simple: in this case distances can be correctly added and short-
est paths have meaningful interpretation as paths with highest probability of
signal transmission from node i to j. Logarithm was negative because we used
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Dijkstra shortest path algorithm for calculations which requires non-negative
graph weights.

Finally, we used random walk matrices, which we calculated as follows:

Wα = (I − αA)−1. (13)

Intuition here that maybe signal decays with each transmission with coefficient
α, so matrix W is limit all such ‘decaying’ random walks.

5.2 Undirected graph metricss

To capture properties of overall network structure, we also compute local node-
based and global graph metrics. We use weighted metrics whenever possible
and unweighted when there is no ready-made solution (see Programming tools
section). For a discussion of possible metrics in brain connectivity analysis we
recommend [18].

5.2.1 Local

Weighted degree

kWi =
∑
j∈V

wij . (14)

Average weighted neighborhood degree

kWnn,i =

∑
j∈V wijk

W
j

kWi
. (15)

Closeness centrality Inverse of average weighted distance to other nodes:

(lWi )−1 =
n− 1∑

j∈V,j 6=i d
W
ij

, (16)

where dWij is weighted shortest path length between nodes i and j. Note that
because we deal with weighted networks, normalization by (n − 1) does not
guarantee maximum centrality value of 1.

Betweenness centrality Quantifies the number of times a node acts as a
bridge along the shortest path between two other nodes (Freeman [19]). We
use the weighted version with shortest paths being computed for the weighted
graph:

bi =
2

(n− 1)(n− 2)

∑
h,j∈V

h 6=j,h 6=i,j 6=i

ρhj(i)

ρhj
, (17)

where ρhj is the number of weighted shortest paths between h and j, and
ρhj(i) is the number of weighted shortest paths between h and j that pass
through i. Again, note that because we deal with weighted networks, normal-
ization by 2

(n−1)(n−2) does not guarantee maximum centrality value of 1.
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Eigenvector centrality Gives high values to vertices that are connected to
many other well-connected vertices (Bonacich, 1986):

eci = vi, (18)

where v is eigenvector, corresponding to the largest eigenvalue of AW .
Due to the theorem of Perron–Frobenius, there exists an eigenvector of the

maximal eigenvalue with only nonnegative (positive) entries.
The only caveat here is how the entries of the eigenvector are normalized.

Most commonly, they are simply divided by the maximal value so that the
maximal eigenvector centrality within each graph is always 1. However, this is
somewhat contrintuitive (maximum should ideally be reached for certain graph
configuration). Hence, strictly speaking, eigenvector centrality gives a kind of
‘relative centrality’ within the graph rather than an absolute value with respect
to what is possible.

Weighted number of triangles

tWi =
1

2

∑
j,h∈V

(ŵijŵihŵjh)
1
3 . (19)

Important. ŵij stands for normalized weights here: all weights are divided by
the maximum weight.

Clustering coefficient The problem here is that there are different possible
generalizations of the clustering cooefficient to weighted graphs. The one used
here is described in Saramäki et al. (2007). This is the formula implemented in
NetworkX, and also the one given in Rubinov and Sporns (2010):

cWi =
2ti

ki(ki − 1)
, (20)

where tWi is the weighted number of triangles for the node i.

Eccentricity The eccentricity ecc(i) of node i is the greatest weighted shortest
path length from node i to any other node:

eccWi = max
j∈V,j 6=i

dWij . (21)

Characteristic path length Average distance between node i and all other
nodes:

lWi =

∑
j∈V,j 6=i d

W
ij

n− 1
, (22)

where dWij is weighted shortest path length between nodes i and j. Note that
this is the inverse of closeness centrality (and vice versa).
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Efficiency Weighted node efficiency is computed as the mean inverse shortest
path length from node i to all other nodes:

eWi =

∑
j∈V,j 6=i(d

W
ij )−1

n− 1
, (23)

where dWij is weighted shortest path length between nodes i and j.

Local efficiency Local efficiency was introduced by Latora and Marchiori
(2001) as a measure that reveals how much the system is fault tolerant, i.e.
how efficient the communication is between the first neighbors of i when i is
removed. Hence, they define the local efficiency as the average efficiency of the
local subgraphs induced by the first neighbors of i. Latora and Marchiori state
that this definition is valid both for unweighted and for weighted graphs. Thus,
the proposed metrics seems to be:

(eloc)
W
i =

∑
(j,h)∈Ei

(dWjh(Gi)
−1

ki(ki − 1)
, (24)

where Gi is a subgraph induced by the first neighbors of i, Ei is the set of
edges of this subgraph. However, Rubinov and Sporns (2010) propose another
generalization of local efficiency to weighted graphs:

(eloc2)Wi =

∑
(j,h)∈Ei

(wijwih(dWjh(Gi)
−1)1/3

ki(ki − 1)
. (25)

This second generalization, however, looks contrintuitive. Why should weights
wij and wih contribute to the estimate of how how efficient the communication
is between the first neighbors of i when i is removed? Still, both versions of
local efficiency were implemented.

5.2.2 Global

Graph characteristic path length This is the average node-level charac-
teristic path length:

LW =
1

n

∑
i∈V

lWi (26)

Graph global efficiency This is the average node-level efficiency:

EWglobal =
1

n

∑
i∈V

eWi (27)
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Graph local efficiency This is the average node-level local efficiency (recall
that there are two versions of them):

EWlocal =
1

n

∑
i∈V

(eloc)
W
i (28)

Graph clustering coefficient This is the average node-level clustering coef-
ficient:

CW =
1

n

∑
i∈V

cWi (29)

Graph transitivity Weighted graph-level transitivity is defined by:

TW =

∑
i∈V 2tWi∑

i∈V ki(ki − 1)
(30)

Graph density Weighted graph density is defined by:

DW =

∑
i,j∈V wij

n(n− 1)
(31)

Graph assortativity by weighted degree This is Pearson correlation co-
efficient of weighted degrees between pairs of connected nodes (Newman, 2003):

r =
|E|−1

∑
(i,j)∈E k

W
i k

W
j −

[
|E|−1

∑
(i,j)∈E

1
2 (kWi + kWj )

]2
|E|−1

∑
(i,j)∈E

1
2 ((kWi )2 + (kWj )2)−

[
|E|−1

∑
(i,j)∈E

1
2 (kWi + kWj )

]2 . (32)

Graph weighted assortativity as in Rubinov and Sporns (2010) This
is another generalization of the assortativity coefficient to weighted networks,
described by Rubinov and Sporns (2010). They refer to it as a modification
from Leung and Chau (2007):

r =
|E|−1

∑
(i,j) ŵijk

W
i k

W
j −

[
|E|−1

∑
(i,j)

1
2 ŵij(k

W
i + kWj )

]2
|E|−1

∑
(i,j)

1
2 ŵij((k

W
i )2 + (kWj )2)−

[
|E|−1

∑
(i,j)

1
2 ŵij(k

W
i + kWj )

]2 .
(33)

Note that normalized weights (divided by the maximum weight in the net-
work) are used here.
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Maximal sum of weights of the largest clique Let G′ be a set of the
largest complete subgraphs of the network, m = |G′|, V ′k the set of nodes of G′k.
Maximal sum of weights of the largest clique is defined by:

CLWmax = max
G′

k

∑
i,j∈V ′

k

wij . (34)

Mean sum of weights of the largest clique Mean sum of weights of the
largest clique is defined by:

CLWmean =

∑
G′

k

∑
i,j∈V ′

k
wij

m
. (35)

Graph diameter This is the value of the greatest eccentricity:

diamW = max
i∈V

eccWi . (36)

Graph radius This is the value of the smallest eccentricity:

radW = min
i∈V

eccWi (37)

Number of graph centers This is the number of nodes i such that radW =
eccWi .

Index of graph center (if a single vertex) If the number of graph centers
equals 1, the index i is returned (note that indexes start with 0). Else, NaN is
returned. Note that this is the only feature that intentionally includes NaNs.

Graph algebraic connectivity The algebraic connectivity of a graph G is
the second-smallest eigenvalue of the Laplacian matrix of G, where the elements
of the Laplacian are given by:

LaplacianWij =

{
−wij if i 6= j,

kWi if i = j.
(38)

Freeman centralization: degree, betweenness, closeness, eigenvector
The centralization of any network is a measure of how central its most central
node is in relation to how central all the other nodes are. Centralization measure
then (a) calculates the sum in differences in centrality between the most central
node in a network and all other nodes, and (b) divides this quantity by the
theoretically largest such sum of differences in any network of the same size:

CF =

∑
i∈V maxi∈V centralityi − centralityi

maxG
∑
i∈V maxi∈V centralityi − centralityi

. (39)
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5.3 Directed graph metrics

Since random walk normalization produces directed random walk graph, we’ve
also calculated directed metrics. In addition to common metrics like PageRank,
hubs and authorities score, we’ve calculated some additional custom metrics
based on random walk intuition.

5.3.1 Common metrics

Node in-degree

kini =
∑
j∈V

pji. (40)

We didn’t calculate out-degrees, because they all are equal to 1.

PageRank score Introduced in 1998 by Brin and Page and roughly estimates
probability that a person randomly clicking on links in the network will arrive
at particular node. It is closely related to random walks on graph and we are
fully aware that it is somewhat tautological feature but we used it nonetheless.
We used igraph implementation to calculate PageRank score.

Hubs and authorities scores Introduced by Kleinberg in 1999 [26]. It is
another algorithmic way to estimate importance of nodes in directed graphs:
authority score shows the value of the node in terms of incoming edges, and
hub estimates value of node links to other nodes. We calculated it using igraph
library implementation.

Stationary distribution vector We also used as features coordinates left
eigenvector π of random walk matrix P corresponding to eigenvalue 1:

πTP = π. (41)

5.3.2 Custom metrics based on random walk logarithms

Many graph metrics are based on assumption that weights of graph edges repre-
sent some kind of distance between nodes which can be added. For the random
walk matrix, where edge weight represents probability of walk between nodes,
it may not be true. For example, if we want to calculate probability of going
from node i to j through node k, the resulting probability will be pij = pik ∗pkj .
It means that if we want to use distance based graph metrics, we should use
something which is additive. We solved this problem with the use of negative
logarithms of edge weights:

wpij = − ln pij . (42)

Then on this new matrix W p we calculated shortest path matrix Dp = {dpij}
using Dijkstra algorithm (hence negative logarithm) for which we calculated:
in- and -out efficiencies, in- and out- degrees, in- and out- characteristic path
lenghts, in- and out- eccentricities, in- and out- closeness centralities. Exact
formulas can be found in [18].
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5.4 Baseline features

To produce an outer baseline, we calculate six global network metrics used by the
authors of the dataset [7]. Note that these features are computed for binarized
networks, hence only non-weighted edges aij appear below:

Weighted clustering coefficient

CC =
1

n

∑
i∈V

2ti
di(di − 1)

, (43)

where ti is the number of triangles for the node i.

Characteristic path length

CPL =
1

n

∑
i∈V

∑
j∈V,j 6=i gij

n− 1
, (44)

where gij is the length of the shortest path (geodesic) between the vertices
i and j.

Normalized CC

λ =
CC

CCrand
, (45)

where CCrand is the average CC from simulated random networks. We random-
ize network by swapping edges between random pairs of vertices (five swaps on
average for each edge), thus preserving each vertex degree, but changing con-
nectivity pattern. One hundred of such random networks is produced for each
subject.

Normalized CPL

γ =
CPL

CPLrand
, (46)

where CPLrand is the average CPL from the same random networks.

Small-worldness

σ =
λ

γ
. (47)

Modularity

Q =
1

2m

∑
ij

[Aij −
didj
2m

]δ(cicj), (48)

where m is the sum of weighted edges in the network, and c is the community.
Hence, Q values represent the proportion of within-module edges in the network
minus the expected proportion from a similar random network. We follow the
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authors of the original paper and produce one reference graph partition based
on the group average network with Louvain modularity algorithm and compute
modularity values with respect to this partition. Since modularity Q values can
vary based on random differences in module assignments from run to run, Q
values are averaged over 100 iterations of the algorithm. Note that the entire
sample is used to produce the group average network. In terms of machine
learning algorithms this means that we incorporate information about both
train and test to compute this particular feature. We do this intentionally to
maintain correspondence between our features and those used by the authors of
the dataset.

There are three important differences in how we computed the six metrics
used by the authors of the original dataset. First, Rudie et al. [7] used the
Brain Connectivity Toolbox (BCT) for Matlab, and we wrote custom scripts in
Python. Second, the authors produced networks with 5% to 8.5% sparsity in
0.5% increments, binarized them and computed average values for each metric.
To obtain networks with exact sparsity level, the BCT algorithm sorts all edges
and preserves the needed exact number of strongest ones. This means that
multiplicity of edges at threshold level is ignored and hence some edges with
threshold-level weight are preserved, while others are dropped. We modify this
procedure so that all edges with threshold-level weight are preserved; hence,
actual sparsity of the networks produced by our algorithm is slightly higher
than the nominal level. Even with this modification, sparsity levels below 7%
lead to a disconnected network in at least one participant; sparsity level 8.5%
is above the minimum sparsity level in the online dataset. Hence, we only
used three sparsity levels (7%, 7.5%. and 8%). With these sparsity levels, the
procedure remains the same: we produce thresholded networks, binarize them,
compute six metrics as described above and average the obtained values across
sparsity levels.

6 Machine learning pipeline

We consider the two classes ‘typically developing’ (TD) and ‘autism spectrum
disorder’ (ASD) based on diagnosis, and classify individual brain networks based
on constructed features described above.

6.1 Classifiers

We used the following classifiers: logistic regression (LR); SVM with linear
kernel [20]; random forest (RF), boosted decision trees (BDT) and stochastic
gradient descent with modified Huber loss. It is important that all of these
methods perform feature selection, either in terms of weighting or in terms of
selecting best features for splitting at tree nodes, so we are able to report most
important nodes for this classification task.

For linear classification we also applied elastic-net regularization:
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ω̂ = argmin
ω

(l(y,x,ω) + α

(
(1− ρ)

2
‖ω‖22 + ρ‖ω‖1)

)
, (49)

where l(y,x,ω) – classification loss (hinge, logistic or modified Huber), α – reg-
ularization coefficient and ρ is l1-ratio. We calculated regularization coefficients
using stochastic gradient descent.

For linear methods we scaled features with min-max scaling:

xscaled =
x− xmin

xmax − xmin
. (50)

We also excluded zero-variance features from our analysis. Both of these
steps were based on train folds and did not incorporate information from test
folds.

6.2 Performance metric and hyperparameters grid search

We measured the performance (prediction quality) of our algorithms with ROC
AUC – area under the receiver operating characteristic curve. It is a common
used metric for binary classification which calculates the area under the True
Positive Rate/False Positive Rate curve obtained by changing the classification
threshold. It provides more complete picture of classification performance then
accuracy and like accuracy can be summarized by one number.We also report
precision and recall for the best models on the best features.

We compare models through two-step procedure. First, for each dataset,
we perform hyperparameters grid search based on 10-fold cross-validation with
fixed random state for reproducibility.

Second, for each dataset we evaluate best parameters for each of the four
models on 50 10-fold splits with fixed different random states. We didn’t use
a holdout set due to small sample size. It is one of the shortcomings of our
study, but it was important for us to use all the data available due to high
dimensionality of the problem.

We also tested several chosen models with on 100 10-fold splits. Predictions
on each test fold are combined to make a prediction on the entire sample due
to a relatively small sample size. Then 100 iterations of 10-fold cross-validation
give 100 ROC AUC values based on the entire sample instead of 1,000 ROC
AUC values based on one tenths of the sample.

We confirmed the results for the fine-tuned model on the best feature set
using the leave-one-out cross-validation procedure. We also extract the relative
feature importance according to the best classification model.

6.3 Dimensionality reduction

On the best feature sets we did dimensionality reduction on two components to
check if there is simple geometry in our data. Namely, we did Principal Com-
ponent Analysis with linear and with radial basis function, sigmoid, polynomial
(degrees 2-5) and cosine kernels, Multidimensional Scaling, Spectral Embedding,
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Isomap and t-distributed Stochastic Neighbour Embedding (TSNE). Parameters
for each method were chosen manually. Before each dimensionality reduction
we did standard scaling:

xscaled =
x− µx
σx

, (51)

where µx and σx are mean and standard deviation of feature x.

6.4 Programming tools

We used Python and IPython notebooks platform [21]. We did matrix calcula-
tions, graph metrics computation and numerical analysis in NumPy [22], SciPy,
NetworkX [23], igraph and louvain libraries. We also employed scikit-learn li-
brary [24] for all dimensionality reduction methods and classifiers except BDT
for which we used xgboost library. We plotted 2D figures with matplotlib[25]
and seaborn in Python; 3D plots were produced with igraph and rgl libraries in
R.

7 Results

We were able to found features and models which showed ROC AUC on the
level of published studies to date (about 0.8). Namely, it was Linear SVM on
node degrees of the connectomes weighted by squared Euclidean distances and
normalized by the geometric mean of adjacent node pairs. We investigated this
phenomena further and were able to achieve 0.84 ROC AUC on leave-one-out
cross-validation. We also tried all common dimensionality reduction methods
(PCA, kernel PCA, Isomap, TSNE, MDS, Spectral Embedding) on the best
features. None of them showed clear geometry in our data, which may indicate
possible overfit.

7.1 Best features and classifiers

Table 1 shows 50 best combinations of features and classifiers in terms of mean
ROC AUC across 500 test folds (produced by 50 iterations of 10-fold cross-
validations with different fixed random states). We see that most winning mod-
els and graph metrics combination are based on weights divided by square dis-
tance. It is interesting that even baseline features performed better on squared
original weights.
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Table 1: 50 best combinations of classifiers and features. Mean and std ROC
AUC values were calculated on 50 10-fold splits with diffrent fixed random
states, thus producing 500 ROC AUC values obtained on one tenth of the sam-
ple.

Weighting Norm Features Classifier Mean AUC Std AUC

rootwbydist sum undirected node local efficiency XGB 0.79 0.17
wbysqdist no norm directed local ’in efficiency’ XGB 0.77 0.15
wbysqdist spect directed local pagerank node SVC 0.77 0.17
wbysqdist spect directed local pagerank node SVC 0.77 0.17
sqrtw spect + max undirected node Barrat neighborhood degree XGB 0.76 0.15
sqrtw spect undirected node Barrat neighborhood degree XGB 0.76 0.15
wbysqdist spect undirected node degree SVC 0.76 0.18
wbysqdist spect undirected node degree SVC 0.76 0.18
wbysqdist no norm directed node ’in efficency’ LR 0.76 0.17
wbysqdist sum undirected node degree XGB 0.76 0.16
binar spect undirected closeness node (by random) XGB 0.76 0.16
wbysqdist spect undirected node degree SVC 0.76 0.18
wbysqdist spect undirected node degree SVC 0.76 0.18
wbysqdist sum undirected node degree XGB 0.75 0.15
wbysqdist spect directed node pagerank SVC 0.75 0.17
wbysqdist no norm directed node in-degree SVC 0.75 0.17
wbysqdist no norm directed node ’in efficiency’ SVC 0.75 0.17
origw spect + max undirected all metrics XGB 0.75 0.16
binar sum undirected global with randomized XGB 0.74 0.18
rootwbydist sum undirected global modularities RF 0.74 0.16
wbysqdist spect directed node pagerank SVC 0.74 0.18
binar sum shortest path edgevector LR 0.74 0.15
wbysqdist no norm directed node in-degree SVC 0.74 0.17
wbysqdist sum undirected node degree normalized by random Huber 0.74 0.15
wbysqdist max undirected node degree normalized by random LR 0.74 0.16
wbysqdist no norm undirected node degree normalized by random LR 0.74 0.16
wbysqdist sum undirected node degree XGB 0.74 0.16
wbysqdist spect directed node pagerank SVC 0.74 0.17
wbysqdist max undirected node degree normalized by random Huber 0.74 0.16
rootwbydist no norm directed node ’in closeness’ SVC 0.74 0.17
binar spect + max undirected node neighborhood degrees XGB 0.74 0.17
wbysqdist sum undirected node degree normalized by random Huber 0.74 0.15
wbysqdist spect directed node pagerank SVC 0.74 0.18
wbysqdist spect undirected node local efficiency XGB 0.74 0.16
sqrtw sum + max shortest paths edgevector LR 0.73 0.17
sqrtw spect + max undirected node clustering coefficient XGB 0.73 0.18
rootwbydist sum undirected global modularities XGB 0.73 0.17
wbysqdist no norm directed node ’in efficiency’ LR 0.73 0.17
sqrtw no norm baseline metrics RF 0.73 0.18
binar spect undirected node local efficiency XGB 0.73 0.17
rootwbydist sum undirected node local efficiency XGB 0.73 0.18
sqrtw spect undirected node clustering coefficient XGB 0.73 0.18
wbysqdist no norm undirected node degree normalized by random Huber 0.73 0.16
sqrtw max paths edgevector LR 0.73 0.17
invdist no norm random walks edgevector (0.8) Huber 0.73 0.16
wbysqdist no norm directed node ’out-efficiency’ SVC 0.73 0.17
origw no norm undirected node local efficiency XGB 0.73 0.18
binar spect + max undirected CPL normalized by random XGB 0.73 0.17
invdist spect random walks edgevector (0.8) Huber 0.73 0.16
invdist no norm random walks edgevector (0.5) SVC 0.73 0.16

Notifications. Weighting: origw – original weights, rootwbydist – root weights
by distance, wbysqdist – weights by squared distance, sqrtw – square root of
original weights, binar – binary, invdist – binary weghts divided by distances.
Classifiers: XGB – Boosted Decision Trees (xgboost implementation), SVC –

linear SVM, LR – Logistic Regression, RF – Random Forest, Huber –
Stochastic Gradient Descent with modified Huber loss. Norm: sum – by

matrix weights sum, spect – by geometric mean of the degrees (9), max – by
maximum connectome weight, spect + max – combination spectral and sum

normalizations (order matters).

7.2 Weighting and normalization effects

Since most of the best results included weights normalized by distance and spec-
tral topological normalization, we’ve decided to envestigate this phenomena fur-
ther. We choose three weighting schemes: original weights, binary, w

d2 weights;
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and two normalization schemes: without and with spectral normalization. For
each of six combinations of weights and normalization we used weighted degrees
as features. We also used baseline metrics calculated on original weights as
seventh dataset.

To avoid overfitting we tested models with the best parameters on 100 10-fold
splits. This was done for each of the seven datasets and four classifiers (Logistic
Regression, Linear SVM, Random Forest, BDT), with the same random states
of 10-fold split to ensure comparability of results. Predictions on each test fold
are combined to make a prediction on the entire sample due to a relatively small
sample size. Then 100 iterations of 10-fold cross-validation give 100 ROC AUC
values based on the entire sample instead of 1,000 ROC AUC values based on
one tenths of the sample.

Figures 4-6 show boxplots of the ROC AUC, precision and recall values for
the models on selected feature sets. The best classification performance is 0.77
mean ROC AUC across 100 iterations. This best model runs on node degrees
of the connectomes weighted by squared Euclidean distances and normalized
by the geometric mean of adjacent node pairs. It performs significantly better
(p = 7.8 × 10−18, Wilcoxon test with Bonferroni post-hoc correction) than the
best model on the baseline feature set with 0.66 mean ROC AUC.

Models on the datasets with other combinations of weighting and normaliza-
tion schemes perform similarly to the baseline or worse. All pairwise differences
between the results on our datasets and the baseline are significant (Wilcoxon
test on ROC AUC values with Bonferroni post-hoc correction has p-values less
than 10−8, except the difference between the baseline and the degrees on nor-
malized original weights with p = 0.028).

The best model for weighted normalized node degrees is obtained by SVM with
linear kernel. Figure 7 compares the results obtained by using different classifiers
on this dataset. Five of seven best models are linear. BDT perform better only
on baseline features and the node degrees on the original non-normed weights.

We also adjusted elastic-net regularization parameters for the best SVM and
LR models on the best feature set (node degrees on the weighted by distance
and normalized connectomes). Results are shown in Figure 8. Elastic-net regu-
larization slightly improves SVM classification performance compared to l1- and
l2-regularizations. Finally, we test the best model on the best feature set using
leave-one-out cross-validation. This yields ROC AUC of 0.83. We average SVM
coefficients for each of 94 SVM models and select ones with absolute weight
greater than 0.5. Results are presented in Table 1. The importance of all node
degrees is visualized in Figure 9.

Neither normalization by distance nor topological normalization alone boosts
classification performance. Weighting by distance could provide some kind of
’regularization’ penalizing weak long connections which could be prone to trac-
tography errors. If it was the case we would see performance improvement on
all feature sets based on distance-weighted connectomes. The same concerns the
topological normalization procedure. It is also possible that with this particular
combination of normalizations we found a pattern specifically for this particular
classification task (ASD vs TD). Short connections may be more important for
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Figure 4: ROC AUC distributions for best models on seven feature sets. Each
distribution is based on 100 predictions on the whole sample based on different
10-fold splits with fixed random states (described in Methods).

Figure 5: Precision distributions for best models on seven feature sets. Each
distribution is based on 100 predictions on the whole sample based on different
10-fold splits with fixed random states (described in ’Classification’ pipeline
section).
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Figure 6: Recall distributions for best models on seven feature sets. Each
distribution is based on 100 predictions on the whole sample based on different
10-fold splits with fixed random states (described in ’Classification’ pipeline
section).

Figure 7: ROC AUC distributions for the best model in each class on the best
feature set (node degrees on the weighted by distance normalized connectomes).
Each distribution is based on 100 predictions on the whole sample based on
different 10-fold splits with fixed random states (described in Methods).
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Figure 8: ROC AUC values for linear SVM and LR for 101 l1-ratios from 0 to
1 in 0.01 increments with α’s fixed at 0.01 for SVM and 0.0008 for LR. Each
ROC AUC mean value is based on 100 predictions on the whole sample based
on different 10-fold splits (described in Methods). Upper and lower dashed lines
for each color represent 75-th and 25-th quantile of ROC AUCs distribution
(consistently with the boxplots).

Figure 9: Zone centers in their physical coordinates (axial view). Node size is
proportional to group average node degrees obtained on matrices weighted by
Euclidean distances and normalized by the geometric mean of degrees of the
adjacent nodes (minimal node degree is 0.584, maximal node degree is 1.419).
Node color represents mean absolute SVM weight of the respective node (see
the colorbar).
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Table 2: Zones with the highest absolute mean SVM weights across 94 leave-
one-out folds

Rank Name of region (mean weight ± std)
1 Left Precuneous Cortex (-0.96 ± 0.04)
2 Left Precentral Gyrus (0.91 ± 0.04)
3 Right Precuneous Cortex (-0.71 ± 0.04)
4 Left Superior Parietal Lobule (0.69 ± 0.04)
5 Left Cingulate Gyrus posterior division (0.62 ± 0.04)
6 Right Lateral Occipital Cortex inferior division (0.58 ± 0.04)
7 Right Occipital Pole (0.56 ± 0.04)
8 Right Intracalcarine Cortex (0.56 ± 0.05)
9 Brain-Stem (0.55 ± 0.05)
10 Left Middle Temporal Gyrus posterior division (0.54 ± 0.04)
11 Right Frontal Pole (0.54 ± 0.04)
12 Left Lateral Occipital Cortex inferior division (0.51 ± 0.04)
13 Right Temporal Pole (0.50 ± 0.04)

ASD patients, see for example [27].

7.3 Dimensionality reduction

Finally, we wanted to validate our results and check whether there is some
intrinsic geometry in our data. We performed dimensionality reduction methods
for one of the best feature sets – degrees of the connectomes weighted by squared
Euclidean distances and normalized by the geometric mean of adjacent node
pairs.

Namely, we did Principal Component Analysis with linear and with radial
basis function, sigmoid, polynomial (degrees 2-5) and cosine kernels, Multidi-
mensional Scaling, Spectral Embedding, Isomap and t-distributed Stochastic
Neighbor Embedding (TSNE). Parameters for each dimensionality reduction
method were chosen manually.

Figure 5 shows results for PCA with linear and cosine kernels, Isomap and
TSNE (figures for other dimensionality reduction methods are pretty much the
same). We see that there is no visible geometry in our data. For example,
explained variance ratios for linear PCA are 0.033 and 0.031 for the first two
components respectively.

Classification based on dimensionality reduction features doesn’t give ROC
AUC better than 0.65. It means that there is no simple geometry in our data
which can explain phenotype differences between ASD and TD subjects.

Also, fail of linear and non-linear dimensionality reduction may also indicate
overfit to current dataset. Due to small sample size and high dimensionality
of the task it is possible that among our features there are some which are
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(a) Linear PCA (b) PCA with cosine kernel

(c) Isomap (d) TSNE

Figure 10: Dimensionality reduction caption

highly correlated with our target. After all, we generated hundreds of thousands
features for the sample size of about one hundred observations.

8 Conclusion and discussion

We generated about 500 hundred different datasets for ASD vs TD connectome
classification task, using combinations seven connectome weighting schemes,
six topological normalizations, and set of graph metrics (common undirected,
common directed and custom directed).

On each of these datasets we performed hyperparameter grid search for cho-
sen classifiers: Logistic Regression, Linear SVM, Stochastic Gradien Descent
with modified Huber loss, Random Forest, Adaboost and Boosted Decision
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Trees. We reported results for 50 best combinations of classifiers and features.
We further investigated effects of combined normalization scheme incorpo-

rating geometric and topological normalization of structural connectomes. We
test our approach by classifying autism spectrum disorder versus typical de-
velopment connectomes with linear and tree-based classification methods. We
showed that neither geometric nor topological normalization alone improve clas-
sification performance. However, a significant performance increase is achieved
using their combination. We further improve leave-one-out cross-validation re-
sults and report relative zone importance by adjusting l1-regularization ratio
for linear SVM.

We also tried all common dimensionality reduction methods on the best fea-
ture set – Principal Component Analysis with linear and with radial basis func-
tion, sigmoid, polynomial (degrees 2-5) and cosine kernels, Multidimensional
Scaling, Spectral Embedding, Isomap and t-distributed Stochastic Neighbor
Embedding (TSNE). It didn’t yield any meaningful results which may indicate
possible overfit to dataset.

There are several limitations of this study. First of all, sample size is quite
small for the results to be conclusive. Although the groups of ASD and TD
subjects are relatively large compared to similar studies published to date, it is
highly desirable to replicate the analyses on larger samples. This is primarily
due to high dimensionality of the task at hand. For example, analysis based on
the bag of edges involved tens of thousands of features with only 94 observations.
We employed statistical techniques of feature selection and cross-validation rec-
ommended for such situations, but larger sample size would be the best recipe
to improve the analysis.

Second, there are certain methodological aspects of the data that should
be noted. For example, parcelling brain volume into nodes was quite unusual
for structural network analysis. Usualy DTI-based networks are constructed on
atlas-based zones or their partitions. Thus, results obtained for this functional-
connectivity-based parcellation scheme need to be reproduced on networks with
alternative parcellation of brain zones.

Finally, we intentionally left aside any neurological interpretation of our
findings. Our study is purely exploratory in nature, and our analysis is blind to
substantial meaning of the observed differences. We output the labels of brain
zones for which significant differences in local network characteristics between
ASD and TD groups are found, but do not go any further in interpreting our
results. Further investigation on additional datasets and classification tasks is
required to generalize our conclusions.
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