
Reskit: a library for creating and curating
reproducible pipelines for machine learning

Dmitry Petrov 1 2, Alexander Ivanov 2 4, Daniel Moyer 1,
Mikhail Belyaev2 4 and Paul Thompson1

July 12
2017

 Outline

— What is Reskit

— How it works

— Main features

— Reskit applications

— Limitations

— Further development

— Conclusion

2

What is Reskit

— A library for creating and curating reproducible pipelines for scientific machine
learning.

— Main features include data caching, compatibility with most of the scikit-learn
objects, optimization constraints such as forbidden combinations, and table
generation for quality metrics.

github.com/neuro-ml/reskit

reskit.readthedocs.io

3

https://github.com/neuro-ml/reskit
http://reskit.readthedocs.io

Reskit: roots

— Reskit heavily relies on scikit-learn architecture. Its core object is an extension of
scikit-learn pipelines.

— It works with sklearn-like data transformation objects (with .fit, .transform and
.fit_transform methods)

— It works with sklearn-like predictive modelling objects (with .fit and .predict
methods)

— It also relies on pandas and (optionally) NetworkX and igraph

4

How Reskit works: toy problem

Imagine you want to perform the following steps: data scaling, dimensionality
reduction and the fit classifier on your data. For each step you have several choices

— scalers: standard and min-max

— dimensionality reduction: PCA and kernel PCA

— predictive models: Logistic Regression and Decision Trees

Also, you don’t want to perform some steps with others. For example, you don’t want
to run min-max scaling kernel PCA (toy example)

5

How Reskit works: defining steps

scalers = [('standard', StandardScaler()),

 ('minmax', MinMaxScaler())]

dim_reduction = [('pca', PCA()),

 ('k_pca', KernelPCA())]

classifiers = [('LR', LogisticRegression()),

 ('DT', DecisionTreeClassifier())]

steps = [('scaler', scalers),

 ('dim_reduction', dim_reduction),

 ('classifier', classifiers)]

param_grid = {'LR': {'penalty': ['l1', 'l2']},

 'DT': {'max_depth': [2, 3, 7, 5]}}

banned_combos = [('minmax', 'k_pca')]

grid_cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)

eval_cv = ShuffleSplit(n_splits=5, shuffle=True, random_state=1)

6

How Reskit works: experiments plan

pipeliner = Pipeliner(steps, grid_cv=grid_cv, eval_cv=eval_cv, param_grid=param_grid,

banned_combos=banned_combos)

pipeliner.plan_table

7

How Reskit works: getting results

X, y = make_classification()

results = pipeliner.get_results(X, y, scoring=['roc_auc'])

results

8

Reskit: features

— Ability to combine pipelines with an equal number of steps in list of experiments,
running them and returning results in Pandas dataframe.

— Step caching. Reskit includes the option to save fixed steps, so in next pipeline
specified steps won’t be recalculated.

— Forbidden combination constraints. You can block the unnecessary pairs
combinations from experiments.

9

Reskit: features

— Evaluation of multiple performance metrics.

— DataTransformer class, which is Reskit’s simplfied interface for specifying fit/transform
methods in pipeline steps. A DataTransformer subclass need only specify one function.

— Tools for learning on graphs. Due to our original motivations Reskit includes a number of
operations for network data. These were implemented using DataTransformer and in some
cases the BCTpy (the Brain Connectivity Toolbox python version)

10

Applications: background

— We work with brain networks (connectomes) which are undirected graphs

— One subject can have several networks: different measurements, different ways of
obtaining these networks

— Application 1: classify brain networks by diagnostic groups (i.e. healthy/ASD
subjects)

— Application 2: compare different algorithms of building these networks using ICC,
pairwise and gender classification

11

ML on networks: problem setting

12

Brain network (connectome)

 T1W

 DWI

Brain network (connectome)

Network features

 Classification

ML on networks: experiment steps

To classify brain networks you need to perform following steps:

— load adjacency matrices according to classification problem

— normalize matrices one way

— normalize matrices another way

— construct networks features

— scale/not scale features

— fit predictive models

https://github.com/neuro-ml/PRNI2016 (old version of Reskit)

13

https://github.com/neuro-ml/PRNI2016

ML on networks: reskit steps

data = [('UCLAsource', Transformer(get_autism)),

 ('UCLAbaseline', Transformer(get_baseline))]

weighters = [('origW', Transformer(orig)),

 ('binar', Transformer(binar_norm)),

 ('wbysqdist', Transformer(wbysqdist))]

normalizers = [('origN', Transformer(orig)),

 ('spectral', Transformer(spectral_norm))]

featurizers = [('origF', Transformer(orig, collect=['X'])),

 ('degrees', Transformer(degrees, collect=['degrees']))]

selectors = [('var_threshold', VarianceThreshold())]

scalers = [('minmax', MinMaxScaler()),

 ('origS', FunctionTransformer(orig))]

classifiers = [('LR', LogisticRegression()),

 ('RF', RandomForestClassifier()),

 ('SVC', SVC()),

 ('XGB', XGBClassifier(nthread=1)),

 ('SGD', SGDClassifier())]

https://github.com/neuro-ml/PRNI2016 (old version of Reskit) 14

https://github.com/neuro-ml/PRNI2016

ML on networks: reskit results sample

15https://github.com/neuro-ml/PRNI2016 (old version of Reskit)

https://github.com/neuro-ml/PRNI2016

Pairwise classification: problem setting

— To compare different connectome construction algorithms we used pairwise
classification — discriminating pairs of connectomes as belonging to same
individuals or not

— In addition to we calculated gender classification on the same data and Intraclass
Correlation Coefficient (ICC)

— Connectomes were built without Reskit, we used it only for ML on ready-made
datasets

https://github.com/lodurality/35_methods_MICCAI_2017

16

https://github.com/lodurality/35_methods_MICCAI_2017

Pairwise classification: problem setting

17

Subject 1

Subject N

Pairwise classification: problem setting

— Let’s assume we have set of connectomes , where where i-indices correspond
to images and j-indices correspond to subjects and feature mapping

 — For each pair of connectome feature vectors we assign target
variable 1 if they are from the same subject, 0 — else;

— We construct three pairwise differences of these vectors according to l
1
, l

2
 and l∞

norms

18

Pairwise classification: challenge

Huge number of experiments (26640):

— 35 connectome building methods and 7 different network scales (parcellations)

— 4 normalizations and 9 types of connectome features

— 3 different datasets

— for each combination we needed to do pairwise and gender classification amd ICC
calculation

https://github.com/lodurality/35_methods_MICCAI_2017

19

https://github.com/lodurality/35_methods_MICCAI_2017

Pairwise classification: challenge

https://github.com/lodurality/35_methods_MICCAI_2017
20

https://github.com/lodurality/35_methods_MICCAI_2017

Pairwise classification: reskit steps

normalizers = [

 ('binar', MatrixNormalizer(binar_norm)),

 ('max', MatrixNormalizer(max_norm)),

 ('mean', MatrixNormalizer(mean_norm)),

 ('no_norm', MatrixNormalizer(no_norm))

]

featurizers = [

 ('bag_of_edges', MatrixFeaturizer([bag_of_edges])),

 ('degrees', MatrixFeaturizer([degrees])),

 ('closeness_centrality', MatrixFeaturizer([closeness_centrality])),

 ('betweenness_centrality',MatrixFeaturizer([betweenness_centrality])),

 ('eigenvector_centrality',MatrixFeaturizer([eigenvector_centrality])),

 ('pagerank', MatrixFeaturizer([pagerank])),

 ('efficiency', MatrixFeaturizer([efficiency])),

 ('clustering_coefficient',MatrixFeaturizer([clustering_coefficient])),

 ('triangles', MatrixFeaturizer([triangles]))

]

pairwise_features = [

 ('l1_l2_linf', VectorFeaturizer(func_list=func_list))

]

https://github.com/lodurality/35_methods_MICCAI_2017 21

https://github.com/lodurality/35_methods_MICCAI_2017

Pairwise classification: reskit results example

22https://github.com/lodurality/35_methods_MICCAI_2017

https://github.com/lodurality/35_methods_MICCAI_2017

Limitations

— Inability to provide custom grid search object (fixing)

— Inability to perform nested cross-validation (fixing)

— Inability to calculate statistics on data (fixing)

— Non-parallelizable

— Very narrow grid_cv/eval_cv experiment scheme

— Inability to save not only plans but experiments objects

— Inability to extend and combine experiment plans

23

Further development

— Ability to merge multiple experiment plans.

— Experiment customization (functions of pipelines)

— Distributed computing for calculation on clusters.

— Ability to calculate different quality metrics after one optimization.

— Collection of DataTransformers for various purposes.

— Option to save best models/pipelines according to external criteria.

24

Conclusion: when Reskit may be useful for you

— You have a lot of data transformation/feature generation steps and want to
compare them

— You want compare different models on different sets of features

— You want experiment results in convenient form for analysis (pandas dataframe)

25

Acknowledgements

Funding: NIH U54 EB020403 (ENIGMA CENTER FOR WORLDWIDE MEDICINE,
IMAGING & GENOMICS), PI Paul M. Thompson; Russian Science Foundation (project
14-50-00150)

26

 Thank you
Reskit: github.com/neuro-ml/reskit

Email: to.dmitry.petrov@gmail.com, alexander.radievich@gmail.com

Github: lodurality, hyperswitcher

 Scipy 2017 Slack: @dmitry_petrov

 ✿*∗˵╰༼✪‿✪༽╯˵∗*✿
27

https://github.com/neuro-ml/reskit
mailto:to.dmitry.petrov@gmail.com
mailto:alexander.radievich@gmail.com
https://github.com/lodurality/
https://github.com/hyperswitcher
http://dfdf

