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Fig. 1. We present GEM3D, a neural generative model able to (a) generate skeleton-based representations, or medial abstractions (in red), and 3D surfaces
(in green) conforming to the structure and topology information encoded in the skeletons. Our method can be used in various applications, such as (b)
reconstructing topologically complex surfaces, (c) synthesizing diverse shape surface samples conforming to a given skeleton, or even (d) synthesizing surfaces
from user-specified skeletons far from the ones observed during training.

We introduce GEM3D – a new deep, topology-aware generative model of
3D shapes. The key ingredient of our method is a neural skeleton-based
representation encoding information on both shape topology and geometry.
Through a denoising diffusion probabilistic model, our method first gener-
ates skeleton-based representations following the Medial Axis Transform
(MAT), then generates surfaces through a skeleton-driven neural implicit
formulation. The neural implicit takes into account the topological and geo-
metric information stored in the generated skeleton representations to yield
surfaces that are more topologically and geometrically accurate compared
to previous neural field formulations. We discuss applications of our method
in shape synthesis and point cloud reconstruction tasks, and evaluate our
method both qualitatively and quantitatively. We demonstrate significantly
more faithful surface reconstruction and diverse shape generation results
compared to the state-of-the-art, also involving challenging scenarios of
reconstructing and synthesizing structurally complex, high-genus shape
surfaces from Thingi10K and ShapeNet.

1 INTRODUCTION
Automated or semi-automated 3D shape synthesis is a significant
and challenging problem in geometric modeling, with wide-ranging
applications to computer-aided design, fabrication, architecture, art,
and entertainment. While early work in this space primarily fo-
cused on handwritten models [Merrell et al. 2010; Musialski et al.
2013; Prusinkiewicz and Lindenmayer 1990], subsequent work em-
ployed statistical learning to infer generative design principles from
data [Fisher et al. 2011; Kalogerakis et al. 2012]. In recent years, a

variety of approaches have developed deep neural network-based ar-
chitectures for 3D synthesis [Chaudhuri et al. 2020; Patil et al. 2020;
Shi et al. 2023; Xu et al. 2023]. While these methods can capture
diverse macro-level appearances, they rarely model shape struc-
ture or topology explicitly, relying instead on the representational
power of the network to generate plausible-looking voxel grids [Liu
et al. 2017], point clouds [Achlioptas et al. 2018a], meshes [Dai and
Nießner 2019], or implicit fields [Chen and Zhang 2019]. Since 3D
networks are hampered by the additional resource overheads in-
curred by the extra dimension compared to 2D image generation
networks, they often struggle to model fine detail and connectivity.
Some approaches do model part layouts [Li et al. 2017], but are
limited in the complexity of the structures they can generate.
At the same time, these prior 3D synthesis methods rarely give

artists flexible, precise control. They act more as black boxes for un-
conditional generation, or reconstruction from images or 3D scans.
Recent methods introduce synthesis based on text prompts [Lin et al.
2023; Poole et al. 2023], with remarkable results but only high-level,
global control via prompt engineering. 3D character artists have
long been accustomed to posing skeleton rigs for accurate character
configuration. However, such direct local control and interpretabil-
ity through intuitive abstractions has had limited success in general
3D shape synthesis. Approaches without explicit structural mod-
eling lack the ability to specify a particular desired topology, e.g.
a chair with a particular slat configuration in the back. On the other
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hand, approaches that do model part-level structure are restricted to
simple topologies defined by assemblies of a few coarse primitives
and cannot model e.g. complex fretwork or ornamentation.

We are interested in realistic 3D shape generation that accurately
models complex topological and geometrical details, and supports
more interpretable control of shape structure and geometry. To
achieve this, we build upon three key insights: (1) topological detail
can often be captured in a “skeletal abstraction”, like that obtained
by a medial axis transform [Tagliasacchi et al. 2016], which serves
as a simplified structural proxy for the shape, even in the absence
of meaningful part decompositions; (2) these abstractions can be
synthesized with generative methods [Karras et al. 2022], predicted
from sparse point clouds [Nie et al. 2020; Yin et al. 2018], or created
manually by an artist, and need not be perfect since they are sim-
ply intermediate representations; and (3) each abstraction can be
decoded into realistic surfaces by another trained model.
Our approach implements the surface generation step by infer-

ring and assembling a collection of locally-supported neural implicit
functions, conditioned on the skeletal abstraction. We draw inspira-
tion from recent work in this area which associates a latent code
with each 3D point in a sparse set, and generates a local implicit from
a latent grid [Zhang et al. 2022]. The mixture of these implicits de-
fines the overall synthesized shape, and allows for better generation
of fine geometric details than a single large implicit. However, the
sparse set of point supports in prior work tends to be arbitrary and
not very interpretable. Follow-up work based on 3D neural fields
and cross-attention [Zhang et al. 2023] drops explicit spatial ground-
ing on the latent grids altogether. In contrast, our skeleton-based
latent grids are more structure-aware, providing more interpretable
supports for latent codes in 3D space, while remaining capable of
representing complex, fine-grained topological structure.
We summarize our contributions as follows:
• We propose a generative model based on diffusion to auto-

matically synthesize skeleton-based shape representations
along with their supporting latents encoding shape informa-
tion. The model’s training procedure is performed without
any form of user input or manual tuning.

• We also devise a neural implicit representation that can be
used to accurately regress the shape surface from a skeletal
representation and associated latent field.

• According to our experiments, our method produces sig-
nificantly more faithful surface reconstruction and diverse
shape generation results compared to the state-of-the-art.
Our method handles challenging scenarios of reconstructing
and synthesizing structurally complex, high-genus shape
surfaces from Thingi10K and ShapeNet (Figure 1), including
synthesizing surfaces from user-specified skeletons largely
different from ones observed during training.

2 RELATED WORK

Skeletonization. 3D skeletonization, the computation of medial
skeletons from a surface representation, is a well-studied problem
in geometry processing. For a full discussion, we refer readers to the
survey of Tagliasacchi et al. [2012]. Skeletons, 1D curves, 2D sheets

or a combination of them, have been used as an intermediate rep-
resentation for creating complete shapes. Traditional optimization
strategies have been proposed via property-grouping and sinking
consolidation to extract skeletons [Tagliasacchi et al. 2009; Wu et al.
2015]. More recently, Yin et al. [2018] proposed a neural network
that can translate surface point clouds to skeletal point clouds, and
Nie et al. [2020] followed up by regressing complete skeletons from
partial surfaces. Clemot et al. [2023] fitted an implicit neural rep-
resentation to surface points and extracted skeletons as the inner
points with minimum SDF value that lie along the opposite direction
to the gradient. On the other hand, our work is focused not only on
computing those representations, but also on creating efficient shape
generation models grounded on medial abstractions. While we also
explore how to estimate such abstractions from point clouds, we pri-
marily demonstrate how these intermediate representations can be
used to guide the generation process, leading to more interpretable
and topologically faithful shapes.

Skeleton-Guided Surface Representation. 3D shapes can be ap-
proximated as unions of spheres. For instance, a surface can be
reconstructed by piecewise linear interpolation of medial spheres
centered on skeleton points [Li et al. 2016]. Shape modeling tools
like ZBrush [Pixologic 2022] allow artists to manually create such
a skeleton of spheres via a feature called ZSpheres. Sphere Meshes
[Thiery et al. 2013] used this representation for automatic shape
approximation and extended it to non-tubular geometry. Convolu-
tion Surfaces [Bloomenthal and Shoemake 1991] are another class
of skeleton-based implicit surfaces where the surface is defined as
the level set of a function obtained by integrating a kernel function
along the skeleton. To avoid blending artifacts, Zanni et al. [2013]
proposed scale-invariant blending. Our work investigates using
such abstractions to guide the generative process for the best of
two worlds – efficient topological representation and interpretabil-
ity from medial abstractions, and detailed surface generation from
data-driven neural fields.

We are inspired by Yin et al. [Yin et al. 2018] and Nie et al. [2020],
who developed neural networks that translate (complete and partial,
respectively) surface point clouds to meso-skeletons, and back to
surface points from which continuous surfaces can be extracted
with Poisson reconstruction. In contrast, we focus on the generation
rather than the regression task, with consequent major differences
in the technical design and applications. We also develop a novel
neural surface representation based on skeleton-supported local
implicits that directly yields a continuous surface, and is designed
to be efficient, detailed, and artifact-free.

Neural Fields. Scalar fields parameterized by neural networks have
been frequently used as a shape representation in many deep gen-
erative models [Chen and Zhang 2019; Mescheder et al. 2019; Park
et al. 2019]. When compared to other representations like voxels
or meshes, those neural fields are capable of representing shapes
with varying topology with reasonable amount of detail without
requiring prohibitive memory footprint. More recent approaches
encode spatially-varying features that locally modulate the neural
fields to improve the accuracy of the generated shapes [Peng et al.
2020; Zhang et al. 2022, 2023]. Unfortunately, those approaches can
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generate topologically incorrect and hard to control shapes. Our
approach addresses both of these issues by representing shapes as
neural fields conditioned on medial abstractions. More specifically,
we learn scalar fields that encode a “thickening” operation on a
skeletal representation, that naturally lead to more interpretable,
controllable and topologically-faithful shapes.

Structure-Aware 3D Generation. A full review of 3D generative
models is beyond our scope: we refer the reader to excellent sur-
veys [Shi et al. 2023; Xu et al. 2023]. Methods that directly generate
“raw” representations such as voxels, meshes, or point clouds fre-
quently yield topological artifacts, omissions, and other inaccuracies
in regions with thin/fine details. Further, they lack interpretable in-
termediates to help users control the generative process. Structure-
aware methods [Chaudhuri et al. 2020], in particular part-based
models (e.g., [Li et al. 2017]), have potentially higher topological
fidelity and interpretability. However, they are currently suitable for
shapes with small numbers of meaningful parts, and not for more
topologically complex structures with ambiguous part decomposi-
tions. We use medial abstractions as a structure-aware intermediate
representation to avoid these limitations.

3 METHOD

(a) medial spheres (b) enveloping primitives

Fig. 3. A shape and its medial axis (pur-
ple) (a) medial balls (yellow) vs (b) en-
veloping primitives [Guo et al. 2023].

At the heart of our method
lies a neural generativemodel
(Figure 2) that first generates
a skeletal representation of a
shape dedicated to compactly
capturing its topology. Then,
conditioned on this skeletal
representation, our genera-
tive model synthesizes the
surface in the form of an im-
plicit function locally modulated by the skeletal data. The skeletal
representation approximates the medial axis of a 3D shape, which
has widely been used to capture shape topology. In the following sec-
tion, we briefly overview preliminaries, then we discuss our neural
implicit function and generative approach.

3.1 Preliminaries

Medial Axis Transformation. Consider a closed, oriented, and
bounded shape 𝑆 in R3, the medial axis is represented as a set of
centers of maximal spheres inscribed within the shape (Figure 3, left).
Each of these medial spheres is tangent to at least two points on the
boundary 𝜕𝑆 of S and does not contain any other boundary points
in its interior. The medial axis transformation (MAT) comprises
both the medial axis and the radius associated with each sphere
center [Tagliasacchi et al. 2016]. The MAT can be used to compactly
capture both topological shape information and its geometry [Li
et al. 2016], yet as also recently noted in [Guo et al. 2023], its ability
to capture local surface details, such as shape protrusions and other
high curvature regions, is limited, since a substantial number of
medial spheres are often needed (Figure 3, left).

Enveloping Primitives. To circumvent the above limitation, Guo
et al. [2023] introduced an implicit function, called “generalized
enveloping primitive”, which represents the shape’s surface as a
directional distance field around the medial axis. Specifically, given
a query point x in R3 and a medial mesh 𝑆 discretizing the medial
axis of a given shape, their enveloping function outputs a signed
distance value for query points depending on their closest medial
elements (medial mesh vertex, edge, or face in their case):

𝐸𝑆 (x) = | |x − sx | | − 𝑟 (ds,x) (1)

where s𝑥 is the closest medial mesh element to the query point x in
Euclidean sense, ds,x = (x− sx)/∥x− sx∥ represents a unit direction
vector from the closest medial mesh element towards the query
point, and 𝑟 (·) is a radius function. The radius function essentially
defines an envelope, or displacement, around the medial axis, which
is modulated differently depending on different directions around
it (Figure 3, right), providing much better surface approximation
compared to using medial spheres. Guo et al. [2023] estimates the
above enveloping function for a given input 3D shape through a
global optimization and iterative refinement procedure.

3.2 Surface generation

Neural enveloping. We

s1 s2
x

s1 s2
x

Fig. 4. (Top) Using the closest medial point
for queries yields wrong ball reconstruc-
tions. (Bottom) Using the closest envelope
yields the right result. Surface reconstruc-
tion is shown in green for both cases.

extend the above prim-
itives to “neural envelopes”,
such that can be used
in our neural generative
model. We employ a neu-
ral network, parameter-
ized by learnable param-
eters 𝜽 , to approximate
the radius function. In our
case, the radius function
depends not only on the
direction from a medial el-
ement to the query point
but also a medial latent
code, which is specific to
the medial element and aims to encode surface information around
the medial axis. The latent code helps decoding towards a more
accurate surface, since it is trained to encode shape information. In
addition, instead of finding the medial element closest to the query
point, as done in [Guo et al. 2023], we found that a significantly
better surface approximation can be achieved by finding the medial
element whose surface envelope is closest to the query point (Figure
4, see also our ablation). Specifically, our neural enveloping function
defines the following implicit:

𝐹 (x;𝜽 ) = min
𝑖

(
| |x − s𝑖 | | − 𝑟 (d𝑖,x, z𝑖 ;𝜽 )

)
(2)

where s = {s𝑖 }𝑁𝑖=1 is a set of 𝑁 medial element positions in R3

produced by our generative model, z = {z𝑖 }𝑁𝑖=1 are corresponding
latent codes (256-dimensional in our implementation) also produced
by our generative model, and d𝑖,x = (x−s𝑖 )/∥x−s𝑖 ∥ are unit vectors
from each medial element towards the query point.
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Fig. 2. GEM3D generative architecture: starting with Gaussian noise in R3, our first diffusion stage generates a point-based medial (skeletal) shape
representation conditioned on a shape category embedding. Conditioned on this representation, our second diffusion stage generates latent codes capturing
shape information around the medial points. In the last stage, our surface decoder decodes the medial latent codes and points to local neural implicit surface
representations, which are then aggregated to create an output 3D shape.

The neural network function 𝑟 has the form of a multi-layer MLP.
Given the values of the implicit function extracted at a dense grid of
query points (2563 in our implementation), the zero-level iso-surface
can be extracted using the marching cubes algorithm [Lorensen and
Cline 1987]. Note that evaluating the Eq. 2 is computationally ex-
pensive given that it requires evaluating the min over the envelopes
of all queries and medial elements. In practice, to accelerate com-
putation, we sample a dense number of unit directions (1000 in our
implementation) around each medial element, estimate the largest
value for the radius across all directions for each medial element
i.e., form a sphere bounding the envelope of each medial element,
then compute the min over only the medial elements whose bound-
ing spheres include the query point. In this manner, we find for
each query point, the medial elements that approximately lie in the
vicinity of the query point.

Training. Given the surfaces of training shapes in a dataset along
with their medial elements, the parameters of theMLP can be trained
to minimize the 𝐿1 loss measuring error between predicted locations
of sample points and the location of training surface sample points
sampled at different directions around each medial element:

𝐿𝑠𝑢𝑟 𝑓 (𝜽 ) =
1
𝑁

𝑁∑︁
𝑖=1

1
|D(𝑖) |

∑︁
𝑑∈D(𝑖 )

∥x̂𝑖,𝑑 − x𝑖,𝑑 ∥1,𝑤ℎ𝑒𝑟𝑒 (3)

x𝑖,𝑑 = s𝑖 + d𝑖 · 𝑟 (d𝑖 , z𝑖 ;𝜽 ) (4)

where D(𝑖) represents a set of training surface points found by
casting rays from each medial element 𝑖 along several sample direc-
tions (1000 in our implementation), x̂𝑖,𝑑 is the 3D location of each
training surface point, and d𝑖 is a sample unit direction vector. The
loss is averaged over all shapes of the training datasets. Note that
in contrast to other neural implicit surface formulations that often
use point samples all over in R3 to avoid trivial solutions (i.e., zero
implicit values everywhere), our MLP only needs surface sample
points to be trained on.

3.3 Generative model
Central to our approach is the generation of medial elements along
with their latent codes. Our generative model proceeds in two stages:
first, we generate the positions of medial elements through a denois-
ing diffusion process [Ho et al. 2020; Karras et al. 2022], then we
generate their latent codes conditioned on their position through

another subsequent diffusion process. Our two-stage process allows
the generation of a multitude of different shapes conforming to
the same skeleton structure, including user-specified skeletons, as
discussed in our results and applications.

Generation of medial elements. Our first stage synthesizes a
point-based representation of the medial axis i.e., a simplified skele-
ton form including only points as medial elements (as opposed to a
mesh). The diffusion process starts by sampling𝑁 3D point positions
from Gaussian noise s ∼ N(0, 𝜎2maxI), where 𝜎max is an initially pre-
scribed standard deviation. Then an iterative denoising procedure is
initiated to synthesize a point-based skeleton. The point denoising is
executed by iteratively solving a probability flow ODE [Karras et al.
2022] in a series of time steps: 𝑑s = −¤𝜎 (𝑡)𝜎 (𝑡)∇s log𝑝

(
s;𝜎 (𝑡)

)
𝑑𝑡

where 𝜎 (𝑡) is a schedule defining the desired noise level at time 𝑡 ,
¤𝜎 (𝑡) is its derivative, and ∇s log𝑝

(
s;𝜎 (𝑡)

)
𝑑𝑡 is the score function

for diffusion models [Song et al. 2021]. Following this vector field
nudges the sample towards areas of higher density of the data dis-
tribution i.e., the distribution over plausible point-based skeletons
in our case. The vector field is approximated with the help of a
denoiser neural network. The network takes as input: (i) a noisy
skeleton sample s consisting of 2048 noisy points in R3 in our imple-
mentation, (ii) the noise level 𝜎𝑡 at a time step 𝑡 , (iii) and a learnable
embedding vector c representing a desired category of shapes (e.g.,
55 different embedding vectors for 55 categories in ShapeNet). The
embedding is used for category-conditioned generation i.e., gener-
ate skeletons conditioned on a desired category, such as “airplanes”.
With the help of the denoiser network, the diffusion process outputs
a skeletal approximation consisting of 2048 sample points. The de-
noiser network consists of a set of blocks each producing a feature
representation for each medial point based on self-attention and
cross-attention operations [Vaswani et al. 2017; Zhang et al. 2023].
Specifically, each block performs the following operations:

{f (𝑙 )
𝑖
}𝑁𝑖=1 = SelfAttn

(
{f (𝑙−1)
𝑖

}𝑁𝑖=1
)

(5)

{f ′(𝑙 )
𝑖
}𝑁𝑖=1 = CrossAttn

(
{f (𝑙 )
𝑖
}𝑁𝑖=1, c

)
(6)

where f (𝑙 )
𝑖

, f ′(𝑙 )
𝑖

are feature vectors (256-dimensional in our imple-
mentation) for each medial point computed after self attention and
cross attention respectively from the block 𝑙 . The first block uses as
features the current sample positions per medial point. The noise
level is taken into account the network through 𝜎-dependent skip
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connections [Karras et al. 2022]. We refer to the same paper for
more details on noise variance scheduling and hyperparameters.

Training of themedial point denoiser network. The parameters
𝝓1 of denoising network 𝐷1 (s, 𝜎𝑡 , c; 𝝓1) are trained by minimizing
the 𝐿2 denoising loss for samples drawn from training skeletons:

𝐿diff,1 (𝝓1) = Eŝ∼𝑝dataEn∼N(0,𝜎2
𝑡 I) ∥𝐷1 (ŝ + n, 𝜎𝑡 , c; 𝝓1) − s∥22 (7)

where ŝ are training point-based skeletons and n is sampled Gauss-
ian noise. The training requires obtaining reference point-based
skeletons for shapes. We developed a fast, distance field-based skele-
tonization algorithm whose basic idea is to move surface sample
points set towards the negative gradient of the signed distance
function through an iterative gradient descent procedure such that
surface shrinks andmoves towards themedial axis.We providemore
details about our skeletonization in the supplementary material. We
stress that the skeletonization was performed fully automatically
for all our datasets without any manual parameter tuning per shape
category or testing scenario.

Generation of medial latents. Given a generated point-based
skeleton s = {s𝑖 }𝑁𝑖=1 from the first diffusion model, or a point-
sampled skeleton provided as input for skeleton-based shape syn-
thesis, our second diffusion stage aims at generating a set of latent
vectors z = {z𝑖 }𝑁𝑖=1. Each latent vector z𝑖 is generated such that it
corresponds to the medial point s𝑖 . This diffusion stage proceeds in
a similar manner to the first one. We start by sampling 𝑁 3D latent
vectors from Gaussian noise, then these are iteratively denoised by
iteratively solving the same probability flowODE [Karras et al. 2022]
as in our first stage (i.e., substituting medial points with medial la-
tents). An important difference is that the denoiser network used to
compute the score function is additionally conditioned on the medial
point positions so that the network outputs latents tailored to each
medial point. Specifically, the denoiser network 𝐷2 (z, s, 𝜎𝑡 , c; 𝝓2)
consists of a set of blocks implementing the self-attention and cross-
attention operations with the input category embedding, similarly to
Eq. 5 and 6 respectively. As an additional operation, each block adds
a positional embedding to the input feature vector h𝑖 of each medial
point based on its position: h′(𝑙 )

𝑖
= h𝑙

𝑖
+ 𝑔(s𝑖 ), where 𝑔 represents a

frequency-based positional embedding of the medial point positions
[Sitzmann et al. 2020], followed by a fully connected layer. We ob-
served that adding this positional embedding offered significantly
better reconstruction results, since it made each latent aware of its
corresponding medial position represented at different frequencies.
The feature representations of the last block is finally processed
through a block of self-attention layers to exchange the information
within the latent set – this last block produces the final latents used
in our surface decoder (Eq. 2).

Training of themedial latent denoiser network. The parameters
𝝓2 of denoising network𝐷2 (z, s, 𝜎𝑡 , c; 𝝓2) are trained by minimizing
the expected 𝐿2 denoising error loss for training latents:

𝐿diff,2 (𝝓2) = E𝑧∼𝑝dataEn∼N(0,𝜎2
𝑡 I) ∥𝐷2 (ẑ + n, 𝜎𝑡 , c; 𝝓2) − z∥22 (8)

where ẑ are training skeletal latent codes. To provide these latent
codes, we devised an autoencoder-based, unsupervised learning

strategy where the training latents are estimated such that they
yield an optimal surface reconstruction error for the training shapes.
More specifically, in a pre-training step that aims to estimate latents
for training shapes, we train an encoder with learnable parameters
𝝎 that takes as input a set of dense surface sample points {x̂𝑘 }𝐾𝑘=1
(200𝐾 in our implementation) along with the training medial points
{ŝ𝑖 }𝑁𝑖=1, encodes them into latent codes, then decodes them back to
predict surface points:

{ẑ𝑖 }𝑁𝑖=1 = Encoder({x̂𝑘 }𝐾𝑘=1, {ŝ𝑖 }
𝑁
𝑖=1;𝝎) (9)

{x𝑘 }𝐾𝑘=1 = Decoder({ŝ𝑖 }𝑁𝑖=1, {ẑ𝑖 }
𝑁
𝑖=1;𝜽 ) (10)

The encoder consists of cross-attention blocks that estimate features
by taking into account both the surface samples and medial points
so that the medial latents encode surface information. The decoder
implements Eq. 2, i.e., it computes surface points based on the radius
function, given medial points and latents. The encoder and decoder
parameters are trained to minimize the surface loss of Eq. 3 along
with a KL regularization loss, as commonly used in variational
autoencoders [Kingma and Welling 2014].

4 RESULTS & APPLICATIONS
We now discuss the experiments and validation of our method for
three different applications: category-conditioned shape generation,
surface reconstruction from point clouds, and skeleton-driven shape
generation. We note that all our code, data, and evaluation will be
publicly released.

4.1 Category-driven shape generation
In this application, the input is a given category (e.g., “lamp”, “chair”,
and so on) and the output is a sample set of 3D generated shapes
from this category. Our method here makes use of the diffusion
stages discussed in Section 3.3: the first stage generates a point-
based MAT given the input category and the second stage generates
the medial latents. Then our surface decoder generates the surface
under the guidance of the medial points and latents (Section 3.2).

Baselines. We compare our method with the following recent neu-
ral 3D generative methods: the autoregressive transformer-based
3DILG model [Zhang et al. 2022] and latent diffusion-based 3DS2VS
[Zhang et al. 2023]. For both competing methods, we use the source
code provided by the authors.

Metrics. As generative evaluation metrics, we employ the metrics
also used in 3DS2VS. First, we report the Maximum Mean Discrep-
ancy based on Chamfer Distance (MMD-CD) and Earth Mover’s
Distance (MMD-EMD) – the MMD metrics quantify the fidelity
of generated examples i.e., how well the generated shapes match
the reference ShapeNet test splits. In addition, we report coverage
measured as the fraction of the generated shapes matching the ref-
erence test splits in terms of Chamfer distance (COV-CD) and Earth
Mover’s Distance (COV-EMD). For implementation details of these
metrics, we refer readers to [Achlioptas et al. 2018b] who introduced
them in the context of 3D generation.
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Metric 3DILG 3DS2VS GEM3D (Ours)

MMD-CD (×102) (↓) 9.64 9.34 8.64
MMD-EMD (×102) (↓) 11.0 10.9 10.1

COV-CD (×102) (↑) 54.8 50.6 58.5
COV-EMD (×102) (↑) 53.1 49.9 57.2

precision (%) (↑) 73.1 72.4 80.6
recall (%) (↑) 79.4 80.3 89.2

PointBert-FID (×10−2) (↓) 1.46 1.62 1.25
PointBert-KID (×1) (↓) 4.06 4.77 2.54

Table 1. Evaluation measures on category-conditioned shape generation.
The measures are averaged over the 10 largest categories of ShapeNet. For
evaluation per-category, please see the supplement.

In addition, as proposed in the literature of image generative
models, we use the Fréchet Inception Distance and Kernel Incep-
tion Distance. While prior work [Zhang et al. 2022, 2023] relies on
PointNet++ embeddings to evaluate these metrics, we use the 768-
D embeddings taken by the more recent and more discriminative
model of PointBert [Yu et al. 2022] trained on ShapeNetCore. We
refer to these two metrics as PointBert-FID and PointBert-KID.
Finally, we report generative precision and recall [Sajjadi et al.
2018] as alternative measures to assess how well generated data
covers the reference test splits and vice versa. For precision and
recall, the similarities are assessed via PointBert embeddings.

Experimental setup. We follow the experimental setup of 3DS2VS
[Zhang et al. 2023], which was also demonstrated in the same appli-
cation. We use the same dataset of ShapeNet-v2 [Chang et al. 2015]
with the same splits. We use the same watertight ShapeNet meshes
provided by [Zhang et al. 2022]. In constrast to 3DS2VS that evalu-
ated category-conditioned generation in 2 categories, in our case we
evaluate on the largest 10 categories from ShapeNet, namely: tables,
cars, chairs, airplanes, sofas, rifles, lamps, watercrafts, benches, and
speakers. To further improve our evaluation, we generate a much
larger set of generated samples – for each method and category, we
generate a number of samples equal to 3x the size of the ground
truth test split per category, which is also consistent with what
Achlioptas et al. [2018b] originally proposed.

Quantitative results. Table 1 shows quantitative evaluation of all
competing methods for all above measures. The measures are aver-
aged over the 10 largest categories of ShapeNet. For all metrics, our
method outperforms the competing work demonstrating results of
better fidelity, coverage, precision and recall. In addition, we observe
that according to FID/KID, our method outputs samples whose fea-
ture distributions match better the reference splits. Our supplement
includes per-category evaluation for all measures – again, for the
majority of categories, GEM3D outperforms the competing methods
for all metrics. In particular, we observe that the gap widens for
categories containing shapes with thin or tubular-like parts, such
as benches, rifles, airplanes, chairs, and tables.

Qualitative results. Figure 5 demonstrates generated samples from
our method for various categories from ShapeNet. We observe that
our method is able to generate structurally challenging patterns
(e.g., grid-like patterns for chair backs), thin parts (e.g, wings for

airplanes), tubular or generalized cylinder-like parts (e.g., lampwires
or other connecting pieces). Our teaser (Figure 1) shows additional
results. For more sample visualizations, we refer to the supplement.

Timings. We note that our method takes approximately 30 seconds
to generate one shape measured on a NVidia RTX A6000.

4.2 Surface reconstruction from point clouds
In this application, the input to our method is a sparse point cloud
of a shape and the output is a reconstructed surface. Here, we also
follow the “auto-encoding” setting also used in 3DILG [Zhang et al.
2022] and 3DS2VS [Zhang et al. 2023], where the point cloud is
obtained after sampling the original input surface. In this autoen-
coding setting, we only use the second diffusion stage of our method
i.e., given a point-based skeleton, the second stage generates the
medial latents, then our surface decoder uses them to reconstruct
the surface. To apply our method on this task, we need as input a
point-sampled skeleton. To obtain such a skeleton, we use a vari-
ant of P2PNet [Yin et al. 2018], an encoder-decoder network that
takes as input a point cloud of a shape’s surface and converts it to
a point-based skeleton representation. Compared to the original
P2PNet, we replaced the original PointNet++ encoder [Qi et al. 2017]
with the cross-attention-based shape encoder from 3DS2VS [Zhang
et al. 2023], including its positional-based embedding functions. We
train this P2PNet variant in the training split of ShapeNet. Then at
test time, we use its output skeletons as input to our second diffu-
sion stage. We emphasize that no manual input or supervision were
needed to obtain the skeletons – P2PNet is trained in a unsupervised
manner.

Baselines. We again compare our method with 3DILG [Zhang et al.
2022] and 3DS2VS [Zhang et al. 2023], which were also applied in
the same auto-encoding setting. All methods use the same number
of latent codes (2048 codes).

Metrics. For evaluation purposes, we compare reconstructed shapes
to their corresponding reference (“ground-truth”) shapes, which the
input point clouds were sampled from. Following 3DS2VS [Zhang
et al. 2023], we use the (squared) Chamfer Distance (CD), Inter-
section Over Union (IoU) and F-Score (F1). Compared to 3DS2VS’
protocol, we made the following changes: (i) for computing IoU,
we use a higher-resolution grid of 2563 instead of 1283 to better
characterize reconstruction of small-scale surface details, thin parts,
and holes, (ii) for CD and F1, we use farthest point sampling instead
or random point sampling to better cover small and thing parts –
random sampling tends to miss such parts. In the supplement, we
provide comparisons using the original 3DS2VS’ protocol.

Experimental setup. Following [Zhang et al. 2022] and [Zhang
et al. 2023], we use the same training and test split from ShapeNet-
v2 to train and test our method respectively. Apart from ShapeNet,
we also test all competing methods in a more challenging out-of-
distribution testing scenario: after training on ShapeNet, we test all
methods on Thingi-10K [Zhou and Jacobson 2016]. We note that the
whole dataset is 10𝐾 test shapes, 4 times larger than the ShapeNet’s
test split. The Thingi10K shapes contain man-made objects that
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Metric Test dataset 3DILG 3D2VS GEM3D (Ours)

CD (↓) Shapenet (10 cat.) 1.69 1.32 1.17
CD (↓) Shapenet (all cat.) 2.05 1.70 1.38
IOU (↑) Shapenet (10 cat.) 90.1 96.2 95.9
IOU (↑) Shapenet (all cat.) 90.5 95.4 95.5
F1 (↑) Shapenet (10 cat.) 97.7 98.5 99.3
F1 (↑) Shapenet (all cat.) 96.3 97.4 98.7

Table 2. Evaluation measures on point cloud surface reconstruction (“auto-
encoding”) in ShapeNet. The rows “ShapeNet (10 cat.)” report the mea-
sures averaged over the 10 largest categories of ShapeNet, while the rows
“ShapeNet (all)” report the measures averaged over all 55 ShapeNet cate-
gories. For evaluation per-category, please see the supplement.

Thingi10K #𝑠ℎ𝑎𝑝𝑒𝑠 3DILG 3D2VS GEM3D (Ours)
all 9997 2.12 1.74 1.68

𝑔𝑒𝑛𝑢𝑠 ≥ 0 5608 1.93 1.62 1.61
𝑔𝑒𝑛𝑢𝑠 ≥ 5 1037 2.41 1.96 1.78
𝑔𝑒𝑛𝑢𝑠 ≥ 10 489 2.88 2.30 1.98CD ↓

𝑔𝑒𝑛𝑢𝑠 ≥ 20 229 3.67 2.91 2.32
all 9997 93.6 96.4 96.7

𝑔𝑒𝑛𝑢𝑠 ≥ 0 5608 95.3 97.4 97.4
𝑔𝑒𝑛𝑢𝑠 ≥ 5 1037 91.1 94.8 95.9
𝑔𝑒𝑛𝑢𝑠 ≥ 10 489 87.5 92.3 93.7F1 ↑

𝑔𝑒𝑛𝑢𝑠 ≥ 20 229 82.6 88.0 90.4
Table 3. Evaluation measures on point cloud surface reconstruction in
the Thingi10K dataset. We note that none of the methods are trained on
Thingi10K, or any subset of it. We report performance in terms of CD and
F1 scores for shapes of increasing genus.

often possess highly complex topology (e.g., a large genus number).
None of the Thingi10K shapes exists in ShapeNet. The vast major-
ity of them do not even relate to any of the ShapeNet categories.
Thingi10K also provides topological complexity information (genus)
for a large subset of the dataset. We use this information as a proxy
of shapes’ topological complexity for additional evaluation.

Quantitative results. Table 2 shows quantitative evaluation on
ShapeNet-v2. The odd rows report the measures averaged over the
10 largest categories of ShapeNet, and the even rows report the mea-
sures averaged over all 55 categories. In terms of the surface-based
metrics of CD and F1 scores, ourmodel is consistently better than the
baselines. In terms of IoU, our model has comparable performance.
The results reflect a more accurate surface reconstruction, without
compromising volumetric (IoU) accuracy. The supplement reports
the performance for each of the largest 10 categories – again, we out-
perform priormethods inmost categories based on the surface-based
metrics. The gap is particularly larger for topologically challenging
categories, such as lamps and watercrafts.

The out-of-distribution evaluation of reconstruction on Thingi10K
is shown in Table 3. Our model clearly outperforms the baselines –
the performance gap increases for topologically challenging shapes
with higher genus. We note that this evaluation does not include
IoU since some Thingi10K ground-truth shapes are not watertight,
thus, volume-based metrics cannot be accurately assessed.

Qualitative results. Figures 6 and 7 shows qualitative evalua-
tion on ShapeNet-v2 and Thingi10K respectively. In particular, the
Thingi10K results show that our method can better reconstruct sur-
face topology e.g., the connectivity of different shape parts and their
surface holes. We suspect that this is due to the ability of our method
to capture structure and topology information through the neural
medial representation, which in turn guides the reconstruction. In
contrast, 3DILG and 3D2VS tend to oversmooth surface details, miss
connections, and alter the topology in an unpredicted manner.

4.3 Skeleton-driven shape synthesis
An alternative application of our method is to generate surfaces
driven by an input skeleton in the form of a point-based MAT. From
a practical point of view, one possibility for users of our method is
to execute our first diffusion stage, obtain various shape structures
represented in their MATs, then select the one matching their target
structure or topology goals more. Then the user can execute the
second stage to obtain various shape alternatives conforming to the
given structure. Figure 8 highlights several examples of this appli-
cation scenario. We show a generated MAT, then diverse surfaces
conforming to this MAT. For example, our method can generate
diverse lamp stands from a table lamp structure or chairs of diverse
part thicknesses conforming to a particular chair structure.

Moreover, instead of obtaining a MAT from our method, an alter-
native scenario is that the user provides such as input. We asked an
artist to draw the skeletons of completely fictional objects using 3D
B-spline curves and patches. Our method was still able to generate
diverse surfaces conforming to these out-of-distribution skeletons,
as shown in Figure 9.

4.4 Ablation studies
In our supplementary material, we show the impact of various
choices in our method, including testing with different number
of medial points and using closest medial points versus closest
envolopes in our implicit function.

5 CONCLUSION
We presented a skeleton-centered generative model of 3D shapes.
Our method first captures structure and topology in the form of
a generated skeleton, then synthesizes the surface guided from it.
Users can also provide their own modeled skeletons in the process
to control shape synthesis.

Our method still has a number of limitations and offers avenues
for further research. First, it relies on a simplified form of point-
based skeletons with fixed resolution. Generalizing our method to
create more expressive representations, such as skeletal diagrams
[Guo et al. 2023], may further enhance the topology information
encoded in our model. Despite the improvements in the topology
of reconstructed shapes, our method does not guarantee certain
topology characteristics; the surfaces might still mismatch a target
topology (e.g., a certain genus) or contain undesired, noisy shape
components. Finally, an interesting future avenuewould be to enable
interactive skeleton editing, exploration, and shape synthesis from
the edits.
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Fig. 5. Category-conditioned shape generation on ShapeNet.We show generated shapes from GEM3D for five categories: chair, lamp, airplane, table,
bench and watercraft. Odd rows are skeletons generated by our model; even rows are surfaces sampled from them.
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Input 3DILG 3D2VS Ours(S) Ours(M) GT

Fig. 6. Point cloud reconstruction on ShapeNet. GEM3D yields better
reconstruction esp for thin and tubular parts, and with better connectivity.

Input 3DILG 3D2VS Ours(S) Ours(M) GT

Fig. 7. Point cloud reconstruction on Thingi10K. In this out-of-
distribution test setting our model is able to reconstruct topology (e.g.,
holes, connectivity) and surface details with less artifacts than prior work.

Skeleton Sample 1 Sample 2 Sample 3 Sample 4

Fig. 8. Surface sampling conditioned on skeleton. Our model can sam-
ple diverse and structurally consistent surfaces from generated skeletons.

Skeleton Sample 1 Sample 2 Sample 3

Fig. 9. Surface generation based on user-modeled skeletons. Our
model is able to generalize to unseen structures encoded in user-provided
skeletons, and produces plausible surface samples from them.
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SUPPLEMENTARY MATERIAL

A PER-CATEGORY EVALUATION
In this appendix, we discuss more detailed evaluation, including
per-category evaluation for generation and reconstruction.

Shape generation. In terms of generative measures, we report
precision and recall per category in Table 4, and PointBert-FID
and PointBert-KID per category in Table 5. We also report the per-
category MMD-CD, MMD-COV, COV-CD, COV-MD in Table 6.
Overall, we observe that for the majority of categories, GEM3D out-
performs the competing methods in terms of all metrics, especially
in terms of generative recall. We hypothesize that is due to fact
that our two step generative procedure allows model to learn better
structural priors leading to generation of more structurally diverse
shapes.

Precision (↑) Recall (↑)
3DILG 3DS2VS Ours 3DILG 3DS2VS Ours

table 76.0 74.0 91.3 74.0 77.4 95.6
car 48.5 74.8 73.5 61.6 73.5 89.2
chair 91.7 82.4 88.9 90.9 84.7 93.2
plane 82.2 74.4 88.8 78.8 86.4 95.3
sofa 64.8 79.4 78.6 82.5 88.9 93.9
rifle 69.3 69.6 75.2 71.0 74.9 85.8
lamp 82.8 50.7 69.1 86.1 72.2 74.4
w-craft 72.3 77.6 84.4 86.1 83.8 87.1
bench 71.6 70.4 81.3 84.5 79.2 88.4
speaker 71.7 71.0 74.4 78.9 81.5 89.5

Table 4. Per-category evaluation of generated samples based on precision
and recall using PointBert as a backbone to assess shape similarity. We note
that for each method we generate a number of samples equal to 3x the size
of the ground truth test split per category.

PointBert-FID (×10−2) (↓) PointBert-KID (↓)
3DILG 3DS2VS Ours 3DILG 3DS2VS Ours

table 1.57 1.53 0.71 6.87 7.49 1.31
car 1.39 0.98 0.82 7.68 3.56 3.13
chair 0.84 1.24 0.79 1.76 3.74 1.20
plane 0.90 1.06 0.79 2.10 4.08 1.46
sofa 1.29 1.07 1.05 3.37 1.46 1.96
rifle 1.52 1.51 1.07 6.53 5.87 2.51
lamp 1.84 3.81 2.88 2.28 15.2 9.32
w-craft 1.70 1.49 1.34 4.18 1.70 0.86
bench 1.70 1.75 1.47 2.84 2.71 1.16
speaker 1.85 1.79 1.62 2.95 1.85 2.50

Table 5. Per-category evaluation of generated samples based on FID and
KID scores using PointBert as a backbone for feature extraction. We note
that for each method we generate a number of samples equal to 3x the size
of the ground truth test split per category.

Surface reconstruction from point clouds. For reconstruction,
we report CD, IoU and F1 scores for each of the largest 10 categories
of ShapeNet in Table 7. We also report performance using 512 latent
codes vs 2048 latent codes for all methods. For most categories,
GEM3D outperforms the competing methods especially in terms of
the surface-based metrics (CD and F1 scores), while it offers compa-
rable performance in terms of IoU. As expected, the performance is
improved with more latent codes for all methods. As explained in
our main text, this evaluation is done on a higher-resolution grid
and with more uniform point-based surface sampling (furthest point
sampling). In contrast, 3DShape2VecSet follows a different evalua-
tion protocol based on a lower-resolution grid and random point
sampling. We report the evaluation measures for reconstruction
based on the original 3DShape2VecSet protocol on the categories re-
ported in their paper in Table 8. We observe the same trends, yet, our
gap with other methods slightly decreases given that this evaluation
protocol is less sensitive to topological and surface details.

B ABLATION
We perform the following ablation studies:
(a) We tested using 2048 vs 512 different number of medial points
and correspondingly, different number of latent codes. Results are
evaluated in the task of surface reconstruction and are shown in Ta-
ble 7. With more latents, our performance is improved, as expected.
(b) We tested using closest medial points vs closest medial envolope
in our implicit function. Using closest medial envelopes yielded the
best performance, as shown in Table 9.

ALGORITHM 1: Medial extraction algorithm

Input: Surface point samples 𝑃 = {p𝑖 }𝑁𝑖=1
Parameters: Learning rate 𝜆 = 0.1, local shape diameter threshold

𝜏max = 0.6, number of neighbors 𝐾 = 20 for kernel
SDF estimation, kernel bandwidth 𝜎2 = 0.002, number
of iterations𝑀 = 50

Result:Medial points 𝑆 = {s𝑖 }𝑁𝑖=1
Initialize: For each surface point p𝑖 ∈ 𝑃 estimate local shape

diameter function 𝛽𝑖 through ray casting and its normal
n𝑖 from the original mesh; initialize medial points
q𝑖 = p𝑖 − 1

2 𝛽𝑖n𝑖
for iterations < 𝑀 do

For each q𝑖 find 𝐾 nearest neighbors p𝑖 𝑗 ;
Estimate local SDF 𝑓 (𝑞𝑖 ) =

∑
𝑗 𝛼𝑖 𝑗 𝑓 (p𝑖 𝑗 )∑

𝑗 𝛼 𝑗
, where:

𝛼𝑖 𝑗 = exp − | |q𝑖−p𝑖 𝑗 | |
2

𝜎2 and
𝑓 (p𝑖 𝑗 ) is the signed distance of q𝑖 to p𝑖 𝑗 ’s tangent plane;
Compute updated skeleton points q̂𝑖 = q𝑖 − 𝜆∇q𝑖 𝑓 (q𝑖 ) ;
if | |q̂𝑖 − p𝑖 | | ≤ 𝜏max𝛽𝑖 then

s𝑖 ← q̂𝑖
end

end

C SKELETONIZATION
Skeletonization is a well-studied topic in the geometry processing
literature [Tagliasacchi et al. 2016]. All skeletonization methods
rely on different assumptions, approximation heuristics, and conver-
gence criteria that might lead to different MAT approximations. We
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MMD-CD (×102) (↓) MMD-EMD (×102) (↓) COV-CD (×102) (↑) COV-EMD (×102) (↑)
3DILG 3DS2VS Ours 3DILG 3DS2VS Ours 3DILG 3DS2VS Ours 3DILG 3DS2VS Ours

table 11.00 9.87 9.01 12.63 11.74 10.67 44.6 59.4 65.0 46.7 53.0 62.9
car 5.42 5.38 5.07 6.37 6.16 5.92 41.9 44.0 42.8 34.2 46.6 46.4
chair 11.89 12.44 10.99 12.86 13.66 12.37 61.4 51.9 61.3 61.1 48.8 56.0
airplane 5.13 5.60 4.70 6.67 7.23 6.21 56.2 46.5 64.3 61.3 47.0 63.3
sofa 12.2 9.7 9.4 12.51 10.63 9.82 43.2 54.8 53.1 40.3 54.0 53.8
rifle 5.27 5.35 5.05 6.83 6.86 6.79 59.3 40.4 55.9 60.4 44.3 53.9
lamp 15.06 15.93 15.32 19.24 20.88 19.69 64.6 41.7 51.0 61.7 43.4 49.2
w-craft 8.53 7.70 7.16 9.55 8.93 8.33 65.2 60.0 71.8 59.3 56.6 65.9
bench 9.68 9.31 9.05 10.72 10.39 10.03 54.8 51.8 54.0 53.3 52.5 55.1
speaker 12.27 12.05 10.56 12.57 12.66 11.45 57.3 55.7 65.4 52.3 53.1 64.9

Table 6. Per-category evaluation of generated samples based on MMD-CD, MMD-COV, COV-CD, and COV-MD. We note that for each method we generate a
number of samples equal to 3x the size of the ground truth test split per category.

3DILG 3D2VS Ours 3DILG 3D2VS Ours
# latents 512 512 512 2048 2048 2048

CD ↓

table 1.38 1.05 1.01 1.36 1.03 0.99
car 2.29 1.86 1.24 2.27 1.76 1.18
chair 1.42 1.09 1.05 1.39 1.06 1.03

airplane 0.98 0.59 0.59 0.97 0.58 0.58
sofa 1.37 1.06 1.02 1.35 1.04 1.00
rifle 0.94 0.47 0.45 0.92 0.46 0.45
lamp 1.82 1.02 0.72 1.8 1.02 0.72
w-craft 1.25 0.84 0.71 1.23 0.79 0.69
bench 1.28 0.94 0.84 1.27 0.93 0.82
speaker 1.8 1.46 1.28 1.77 1.42 1.23

IOU ↑

table 88.9 95.9 93.5 88.9 96.2 94.3
car 92.9 95.8 94.8 93.1 96.2 95.7
chair 90.5 95.9 94.8 90.6 96.4 95.3

airplane 89.3 96.5 96.5 89.6 96.9 96.7
sofa 95.1 98.1 97.5 95.2 98.3 97.8
rifle 87.0 96.0 96.5 87.2 96.2 96.6
lamp 85.6 94.0 94.5 86.5 94.6 93.9
w-craft 90.8 96.4 96.5 91.0 96.7 96.8
bench 85.7 94.4 94.0 86.0 94.7 94.8
speaker 92.4 95.9 94.7 92.6 96.3 97.7

F1 ↑

table 99.0 99.4 99.6 99.1 99.5 99.7
car 91.6 93.2 96.5 91.9 93.9 97.4
chair 98.5 99.2 99.4 98.7 99.3 99.4

airplane 99.6 99.9 99.9 99.6 99.9 99.9
sofa 98.7 99.2 99.5 98.9 99.4 99.6
rifle 99.7 99.9 100.0 99.7 100.0 100.0
lamp 97.4 98.6 99.5 97.4 98.7 99.4
w-craft 98.1 98.6 99.7 98.2 98.9 99.8
bench 98.7 99.3 99.7 98.9 99.3 99.7
speaker 95.9 96.9 98.3 96.2 97.4 98.7

Table 7. Evaluation of reconstructed surfaces on ShapeNet based on Cham-
fer Distance (CD), Intersection over Union (IoU), and F1 scores for the
auto-encoding task. All numbers are scaled by 100.

tried various skeletonizations methods, including mean curvature
flow skeletons [Tagliasacchi et al. 2012], medial skeletal diagrams
[Guo et al. 2023], and the “neural skeletons” by Clemot et al. [2023].
However, we found that all methods either were too slow to pro-
cess large datasets or needed manual parameter runing. For our
purposes, we needed a skeletonization method that is scalable i.e.,
is able to handle large shape collections, such as ShapeNet (in other
words, it is able to extract a skeleton from a mesh efficiently e.g.,
a few seconds for the largest mesh). The algorithm should also be
robust to varying mesh tesselations, and most importantly should
not not require manual parameter adjustment for different shape
categories.

During our early experiments, we found out that none of existing
methods satisfy all the above criteria. These issues led us to develop
our own skeletonization algorithm that balances computational
efficiency with the need for accurate skeletons. A key component of
this algorithm is a gradient descent procedure on the signed distance
function (SDF) of the shape approximated through a local RBF kernel
to shrink the surface iteratively towards its interior. We note that
our skeletonization is inspired by [Clémot and Digne 2023], yet with
several important differences, including in the surface sampling,
initialization, gradient descent procedure, and stopping criteria. The
algorithm is summarized in Algorithm 1. It initiates medial points
from surface sample points from a givenmesh by shifting the surface
points according to their negated surface normal and a multiplier
of the local shape diameter estimated per point through ray casting.
This initialization bootstraps the procedure, since the subsequent
iterative phase of the method is slower. In the iterative phase, for
each current position of medial point, the algorithm computes a
Signed Distance Function approximation (SDF) by averaging its
signed distances to the tangent planes of the nearest surface points.
The averaging is performed with the help of RBF kernel. Following
the gradient of the SDF gradually shrinks the shape. The update
is constrained: it is accepted if the updated point remains within
a distance less than a given threshold expressed as a multiplier
(approximately half) of the local shape diameter. This ensures that
the points will meet close to themiddle of the shape andwill not drift
too further away. The method continues until the skeleton point
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OccNet ConvOccNet IF-Net 3DILG 3D2VS-LQ 3D2VS-PQ GEM3D

CD ↓

table 0.041 0.036 0.029 0.026 0.026 0.026 0.014
car 0.082 0.083 0.067 0.066 0.062 0.062 0.016
chair 0.058 0.044 0.031 0.029 0.028 0.027 0.015

airplane 0.037 0.028 0.020 0.019 0.018 0.017 0.008
sofa 0.051 0.042 0.032 0.030 0.030 0.029 0.015
rifle 0.046 0.025 0.018 0.017 0.016 0.014 0.006
lamp 0.090 0.050 0.038 0.036 0.035 0.032 0.010

IoU ↑

table 0.823 0.847 0.901 0.963 0.965 0.971 0.960
car 0.911 0.921 0.952 0.961 0.966 0.969 0.936
chair 0.803 0.856 0.927 0.950 0.957 0.964 0.958

airplane 0.835 0.881 0.937 0.952 0.962 0.969 0.961
sofa 0.894 0.930 0.960 0.975 0.975 0.982 0.974
rifle 0.755 0.871 0.914 0.938 0.947 0.960 0.956
lamp 0.735 0.859 0.914 0.926 0.931 0.956 0.934

F1 ↑

table 0.961 0.982 0.998 0.999 0.999 0.999 0.991
car 0.830 0.852 0.888 0.892 0.898 0.899 0.965
chair 0.890 0.943 0.990 0.992 0.994 0.997 0.984

airplane 0.948 0.982 0.994 0.993 0.994 0.995 0.998
sofa 0.918 0.967 0.988 0.986 0.986 0.990 0.987
rifle 0.922 0.987 0.998 0.997 0.998 0.999 0.999
lamp 0.820 0.945 0.970 0.971 0.970 0.975 0.990

Table 8. Evaluation of reconstructed surfaces on ShapeNet based on Chamfer Distance (CD), Intersection over Union (IoU), and F1 scores for the auto-encoding
task. Here we use the original 3DShape2VecSet protocol. We report the same seven categories and numbers are not scaled as in their paper.

Choice in the decoder CD (↓) IOU (↑) F1(↑)
Closest medial point 1.41 89.9 98.6

Closest medial envelope 1.38 95.5 98.7
Table 9. Ablation study based on the ShapeNet point cloud reconstruction
task (we report averages over all 55 categories).

positions converge up to a tolerance threshold. The parameters used
in our method are listed in Algorithm 1. For all our shapes involved
in our experiments, these parameters were fixed.
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